Do you want to publish a course? Click here

A Polynomial Time Algorithm for Spatio-Temporal Security Games

204   0   0.0 ( 0 )
 Added by Soheil Behnezhad
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

An ever-important issue is protecting infrastructure and other valuable targets from a range of threats from vandalism to theft to piracy to terrorism. The defender can rarely afford the needed resources for a 100% protection. Thus, the key question is, how to provide the best protection using the limited available resources. We study a practically important class of security games that is played out in space and time, with targets and patrols moving on a real line. A central open question here is whether the Nash equilibrium (i.e., the minimax strategy of the defender) can be computed in polynomial time. We resolve this question in the affirmative. Our algorithm runs in time polynomial in the input size, and only polylogarithmic in the number of possible patrol locations (M). Further, we provide a continuous extension in which patrol locations can take arbitrary real values. Prior work obtained polynomial-time algorithms only under a substantial assumption, e.g., a constant number of rounds. Further, all these algorithms have running times polynomial in M, which can be very large.



rate research

Read More

In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. By the results of Chatterjee and Doyen (2012) and of Schewe, Weinert, and Zimmermann (2018), our main technical result implies that there are pseudo-quasi-polynomial algorithms for solving parity energy games and for solving parity games with weights. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games.
Stackelberg security game models and associated computational tools have seen deployment in a number of high-consequence security settings, such as LAX canine patrols and Federal Air Marshal Service. These models focus on isolated systems with only one defender, despite being part of a more complex system with multiple players. Furthermore, many real systems such as transportation networks and the power grid exhibit interdependencies between targets and, consequently, between decision makers jointly charged with protecting them. To understand such multidefender strategic interactions present in security, we investigate game theoretic models of security games with multiple defenders. Unlike most prior analysis, we focus on the situations in which each defender must protect multiple targets, so that even a single defenders best response decision is, in general, highly non-trivial. We start with an analytical investigation of multidefender security games with independent targets, offering an equilibrium and price-of-anarchy analysis of three models with increasing generality. In all models, we find that defenders have the incentive to over-protect targets, at times significantly. Additionally, in the simpler models, we find that the price of anarchy is unbounded, linearly increasing both in the number of defenders and the number of targets per defender. Considering interdependencies among targets, we develop a novel mixed-integer linear programming formulation to compute a defenders best response, and make use of this formulation in approximating Nash equilibria of the game. We apply this approach towards computational strategic analysis of several models of networks representing interdependencies, including real-world power networks. Our analysis shows how network structure and the probability of failure spread determine the propensity of defenders to over- or under-invest in security.
We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Brazdil, Janv{c}ar, and Kuv{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.
Ridesharing platforms match drivers and riders to trips, using dynamic prices to balance supply and demand. A challenge is to set prices that are appropriately smooth in space and time, so that drivers with the flexibility to decide how to work will nevertheless choose to accept their dispatched trips, rather than drive to another area or wait for higher prices or a better trip. In this work, we propose a complete information model that is simple yet rich enough to incorporate spatial imbalance and temporal variations in supply and demand -- conditions that lead to market failures in todays platforms. We introduce the Spatio-Temporal Pricing (STP) mechanism. The mechanism is incentive-aligned, in that it is a subgame-perfect equilibrium for drivers to always accept their trip dispatches. From any history onward, the equilibrium outcome of the STP mechanism is welfare-optimal, envy-free, individually rational, budget balanced, and core-selecting. We also prove the impossibility of achieving the same economic properties in a dominant-strategy equilibrium. Simulation results show that the STP mechanism can achieve substantially improved social welfare and earning equity than a myopic mechanism.
169 - Hugo Gimbert 2017
Recently Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan proposed a quasi-polynomial time algorithm for parity games. This paper proposes a short proof of correctness of their algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا