Do you want to publish a course? Click here

Multidefender Security Games

187   0   0.0 ( 0 )
 Added by Andrew Smith
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Stackelberg security game models and associated computational tools have seen deployment in a number of high-consequence security settings, such as LAX canine patrols and Federal Air Marshal Service. These models focus on isolated systems with only one defender, despite being part of a more complex system with multiple players. Furthermore, many real systems such as transportation networks and the power grid exhibit interdependencies between targets and, consequently, between decision makers jointly charged with protecting them. To understand such multidefender strategic interactions present in security, we investigate game theoretic models of security games with multiple defenders. Unlike most prior analysis, we focus on the situations in which each defender must protect multiple targets, so that even a single defenders best response decision is, in general, highly non-trivial. We start with an analytical investigation of multidefender security games with independent targets, offering an equilibrium and price-of-anarchy analysis of three models with increasing generality. In all models, we find that defenders have the incentive to over-protect targets, at times significantly. Additionally, in the simpler models, we find that the price of anarchy is unbounded, linearly increasing both in the number of defenders and the number of targets per defender. Considering interdependencies among targets, we develop a novel mixed-integer linear programming formulation to compute a defenders best response, and make use of this formulation in approximating Nash equilibria of the game. We apply this approach towards computational strategic analysis of several models of networks representing interdependencies, including real-world power networks. Our analysis shows how network structure and the probability of failure spread determine the propensity of defenders to over- or under-invest in security.



rate research

Read More

An ever-important issue is protecting infrastructure and other valuable targets from a range of threats from vandalism to theft to piracy to terrorism. The defender can rarely afford the needed resources for a 100% protection. Thus, the key question is, how to provide the best protection using the limited available resources. We study a practically important class of security games that is played out in space and time, with targets and patrols moving on a real line. A central open question here is whether the Nash equilibrium (i.e., the minimax strategy of the defender) can be computed in polynomial time. We resolve this question in the affirmative. Our algorithm runs in time polynomial in the input size, and only polylogarithmic in the number of possible patrol locations (M). Further, we provide a continuous extension in which patrol locations can take arbitrary real values. Prior work obtained polynomial-time algorithms only under a substantial assumption, e.g., a constant number of rounds. Further, all these algorithms have running times polynomial in M, which can be very large.
We propose a model of interdependent scheduling games in which each player controls a set of services that they schedule independently. A player is free to schedule his own services at any time; however, each of these services only begins to accrue reward for the player when all predecessor services, which may or may not be controlled by the same player, have been activated. This model, where players have interdependent services, is motivated by the problems faced in planning and coordinating large-scale infrastructures, e.g., restoring electricity and gas to residents after a natural disaster or providing medical care in a crisis when different agencies are responsible for the delivery of staff, equipment, and medicine. We undertake a game-theoretic analysis of this setting and in particular consider the issues of welfare maximization, computing best responses, Nash dynamics, and existence and computation of Nash equilibria.
Stackelberg security games are a critical tool for maximizing the utility of limited defense resources to protect important targets from an intelligent adversary. Motivated by green security, where the defender may only observe an adversarys response to defense on a limited set of targets, we study the problem of learning a defense that generalizes well to a new set of targets with novel feature values and combinations. Traditionally, this problem has been addressed via a two-stage approach where an adversary model is trained to maximize predictive accuracy without considering the defenders optimization problem. We develop an end-to-end game-focused approach, where the adversary model is trained to maximize a surrogate for the defenders expected utility. We show both in theory and experimental results that our game-focused approach achieves higher defender expected utility than the two-stage alternative when there is limited data.
This study investigates simple games. A fundamental research question in this field is to determine necessary and sufficient conditions for a simple game to be a weighted majority game. Taylor and Zwicker (1992) showed that a simple game is non-weighted if and only if there exists a trading transform of finite size. They also provided an upper bound on the size of such a trading transform, if it exists. Gvozdeva and Slinko (2011) improved that upper bound; their proof employed a property of linear inequalities demonstrated by Muroga (1971).In this study, we provide a new proof of the existence of a trading transform when a given simple game is non-weighted. Our proof employs Farkas lemma (1894), and yields an improved upper bound on the size of a trading transform. We also discuss an integer-weight representation of a weighted simple game, improving the bounds obtained by Muroga (1971). We show that our bound on the quota is tight when the number of players is less than or equal to five, based on the computational results obtained by Kurz (2012). Furthermore, we discuss the problem of finding an integer-weight representation under the assumption that we have minimal winning coalitions and maximal losing coalitions.In particular, we show a performance of a rounding method. Lastly, we address roughly weighted simple games. Gvozdeva and Slinko (2011) showed that a given simple game is not roughly weighted if and only if there exists a potent certificate of non-weightedness. We give an upper bound on the length of a potent certificate of non-weightedness. We also discuss an integer-weight representation of a roughly weighted simple game.
It is known that there are uncoupled learning heuristics leading to Nash equilibrium in all finite games. Why should players use such learning heuristics and where could they come from? We show that there is no uncoupled learning heuristic leading to Nash equilibrium in all finite games that a player has an incentive to adopt, that would be evolutionary stable or that could learn itself. Rather, a player has an incentive to strategically teach such a learning opponent in order secure at least the Stackelberg leader payoff. The impossibility result remains intact when restricted to the classes of generic games, two-player games, potential games, games with strategic complements or 2x2 games, in which learning is known to be nice. More generally, it also applies to uncoupled learning heuristics leading to correlated equilibria, rationalizable outcomes, iterated admissible outcomes, or minimal curb sets. A possibility result restricted to strategically trivial games fails if some generic games outside this class are considered as well.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا