Do you want to publish a course? Click here

A new design principle of robust onion-like networks self-organized in growth

307   0   0.0 ( 0 )
 Added by Yukio Hayashi
 Publication date 2017
  fields Physics
and research's language is English
 Authors Yukio Hayashi




Ask ChatGPT about the research

Todays economy, production activity, and our life are sustained by social and technological network infrastructures, while new threats of network attacks by destructing loops have been found recently in network science. We inversely take into account the weakness, and propose a new design principle for incrementally growing robust networks. The networks are self-organized by enhancing interwoven long loops. In particular, we consider the range-limited approximation of linking by intermediations in a few hops, and show the strong robustness in the growth without degrading efficiency of paths. Moreover, we demonstrate that the tolerance of connectivity is reformable even from extremely vulnerable real networks according to our proposed growing process with some investment. These results may indicate a prospective direction to the future growth of our network infrastructures.



rate research

Read More

110 - Yukio Hayashi 2014
A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the periphery by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
We study a mechanism of activity sustaining on networks inspired by a well-known model of neuronal dynamics. Our primary focus is the emergence of self-sustaining collective activity patterns, where no single node can stay active by itself, but the activity provided initially is sustained within the collective of interacting agents. In contrast to existing models of self-sustaining activity that are caused by (long) loops present in the network, here we focus on tree--like structures and examine activation mechanisms that are due to temporal memory of the nodes. This approach is motivated by applications in social media, where long network loops are rare or absent. Our results suggest that under a weak behavioral noise, the nodes robustly split into several clusters, with partial synchronization of nodes within each cluster. We also study the randomly-weighted version of the models where the nodes are allowed to change their connection strength (this can model attention redistribution), and show that it does facilitate the self-sustained activity.
Tens of thousands of parent companies control millions of subsidiaries through long chains of intermediary entities in global corporate networks. Conversely, tens of millions of entities are directly held by sole owners. We propose an algorithm for identification of ultimate controlling entities in such networks that unifies direct and indirect control and allows for continuous interpolation between the two concepts via a factor damping long paths. By exploiting onion-like properties of ownership networks the algorithm scales linearly with the network size and handles circular ownership by design. We apply it to the universe of 4.2 mln UK companies and 4 mln of their holders to understand the distribution of control in the country. Furthermore, we provide the first independent evaluation of the control identification results. We reveal that the proposed $alpha$-ICON algorithm identifies more than 96% of beneficiary entities from the evaluation set and supersedes the existing approaches reported in the literature. We refer the superiority of $alpha$-ICON algorithm to its ability to correctly identify the parents long away from their subsidiaries in the network.
194 - Yukio Hayashi , Yuki Tanaka 2019
We numerically investigate that optimal robust onion-like networks can emerge even with the constraint of surface growth in supposing a spatially embedded transportation or communication system. To be onion-like, moderately long links are necessary in the attachment through intermediations inspired from a social organization theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا