No Arabic abstract
We theoretically study the lattice relaxation in the twisted bilayer graphene (TBG) and its effect on the electronic band structure. We develop an effective continuum theory to describe the lattice relaxation in general TBGs and obtain the optimized structure to minimize the total energy. At small rotation angles $< 2^{circ}$, in particular, we find that the relaxed lattice drastically reduces the area of AA-stacking region, and form a triangular domain structure with alternating AB and BA stacking regions. We then investigate the effect of the domain formation on the electronic band structure. The most notable change from the non-relaxed model is that an energy gap up to 20meV opens at the superlattice subband edges on the electron and hole sides. We also find that the lattice relaxation significantly enhances the Fermi velocity, which was strongly suppressed in the non-relaxed model.
The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first magic angle $theta=1.08^circ$ to $theta=3.89^circ$, with the former corresponding to the largest unit cell, comprising 11164 carbon atoms). By properly taking into account the long-range van der Waals interaction, we provide the patterns for the atomic displacements (with respect to the ideal twisted bilayer). The out-of-plane relaxation shows an oscillating (buckling) behavior, very evident for the smallest angles, with the atoms around the AA stacking regions interested by the largest displacements. The out-of-plane displacements are accompanied by a significant in-plane relaxation, showing a vortex-like pattern, where the vorticity (intended as curl of the displacement field) is reverted when moving from the top to the bottom plane and viceversa. Overall, the atomic relaxation results in the shrinking of the AA stacking regions in favor of the more energetically favorable AB/BA stacking domains. The measured flat bands emerging at the first magic angle can be accurately described only if the atomic relaxations are taken into account. Quite importantly, the experimental gaps separating the flat band manifold from the higher and lower energy bands cannot be reproduced if only in-plane or only out-of-plane relaxations are considered. The stability of the relaxed bilayer at the first magic angle is estimated to be of the order of 0.5-0.9 meV per atom (or 7-10 K). Our calculations shed light on the importance of an accurate description of the vdW interaction and of the resulting atomic relaxation to envisage the electronic structure of this really peculiar kind of vdW bilayers.
The generalized tight-binding model, based on the subenvelope functions of distinct sublattices, is developed to investigate the magnetic quantization in sliding bilayer graphenes. The relative shift of two graphene layers induces a dramatic transformation between the Dirac-cone structure and the parabolic band structure, and thus leads to drastic changes of Landau levels (LLs) in the spatial symmetry, initial formation energy, intergroup anti-crossing, state degeneracy and semiconductor-metal transition. There exist three kinds of LLs, i.e., well-behaved, perturbed and undefined LLs, which are characterized by a specific mode, a main mode plus side modes, and a disordered mode, respectively. Such LLs are clearly revealed in diverse magneto-optical selection rules. Specially, the undefined LLs frequently exhibit intergroup anti-crossings in the field-dependent energy spectra, and show a large number of absorption peaks without optical selection rules.
Evidence of flat-band magnetism and half-metallicity in compressed twisted bilayer graphene is provided with first-principles calculations. We show that dynamic band-structure engineering in twisted bilayer graphene is possible by controlling the chemical composition with extrinsic doping, the interlayer coupling strength with pressure, and the magnetic ordering with external electric field. By varying the rotational order and reducing the interlayer separation an unbalanced distribution of charge density resulting in the spontaneous apparition of localized magnetic moments without disrupting the structural integrity of the bilayer. Weak exchange correlation between magnetic moments is estimated in large unit cells. External electric field switches the local magnetic ordering from ferromagnetic to anti-ferromagnetic. Substitutional doping shifts the chemical potential of one spin distribution and leads to half-metallicity. Flakes of compressed twisted bilayer graphene exhibit spontaneous magnetization, demonstrating that correlation between magnetic moments is not a necessary condition for their formation.
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van Hove singularity transition peak, and the emergence of very strong intra-valence (intra-conduction) band transition. These anomalous optical behaviors demonstrate consistently the non-rigid band structure modification created by the ion-gel gating through the layer-dependent Coulomb screening. We propose that this screening-driven band modification is an universal phenomenon that persists to other bilayer crystals in general, establishing the electrical gating as a versatile technique to engineer the band structures and to create new types of optical absorptions that can be exploited in electro-optical device application.
Twisted bilayer graphene (TBG) hosts nearly flat bands with narrow bandwidths of a few meV at certain {em magic} twist angles. Here we show that in twisted gapped Dirac material bilayers, or massive twisted bilayer graphenes (MTBG), isolated nearly flat bands below a threshold bandwidth $W_c$ are expected for continuous small twist angles up to a critical $theta_c$ depending on the flatness of the original bands and the interlayer coupling strength. Narrow bandwidths of $W lesssim $30 meV are expected for $theta lesssim 3^{circ} $ for twisted Dirac materials with intrinsic gaps of $sim 2$ eV that finds realization in monolayers of gapped transition metal dichalcogenides (TMDC), silicon carbide (SiC) among others, and even narrower bandwidths in hexagonal boron nitride (BN) whose gaps are $sim 5$ eV, while twisted graphene systems with smaller gaps of a few tens of meV, e.g. due to alignment with hexagonal boron nitride, show vestiges of the magic angles behavior in the bandwidth evolution. The phase diagram of finite valley Chern numbers of the isolated moire bands expands with increasing difference between the sublattice selective interlayer tunneling parameters. The valley contrasting circular dichroism for interband optical transitions is constructive near $0^{circ}$ and destructive near $60^{circ}$ alignments and can be tuned through electric field and gate driven polarization of the mini-valleys. Combining massive Dirac materials with various intrinsic gaps, Fermi velocities, interlayer tunneling strengths suggests optimistic prospects of increasing $theta_c$ and achieving correlated states with large $U/W$ effective interaction versus bandwidth ratios.