No Arabic abstract
Dark gaps are commonly seen in early-to-intermediate type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 database and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this gap method provides remarkably consistent interpretations of the morphology of early-to-intermediate type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.
We have searched for presence of current star formation in outer stellar rings of early-type disk (S0-Sb) galaxies by inspecting a representative sample of nearby galaxies with rings from the recent Spitzer catalog ARRAKIS (Comeron et al. 2014). We have found that regular rings (of R-type) reveal young stellar population with the age of less than 200~Myr in about half of all the cases, while in the pseudorings (open rings, R), which inhabit only spiral galaxies, current star formation proceeds almost always.
Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star-formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explore(GALEX) ultraviolet photometry, and the Sloan Digital Sky Survey (SDSS) optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analysed using the GALEX data and the NASA/IPAC Extragalactic Database (NED) optical data. We find that the NUV-optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV-r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star-formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core-collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.
The origin of S0 galaxies is discussed in the framework of early mergers in a Cold Dark Matter cosmology, and in a scenario where S0s are assumed to be former spirals stripped of gas. From an analysis of 127 early-type disk galaxies (S0-Sa), we find a clear correlation between the scale parameters of the bulge (r_eff) and the disk (h_R), a correlation which is difficult to explain if these galaxies were formed in mergers of disk galaxies. However, the stripping hypothesis, including quiescent star formation, is not sufficient to explain the origin of S0s either, because it is not compatible with our finding that S0s have a significantly smaller fraction of bars (46$pm$6 %) than their assumed progenitors, S0/a galaxies (93$pm$5 %) or spirals (64-69 %). Our conclusion is that even if a large majority of S0s were descendants of spiral galaxies, bars and ovals must play an important role in their evolution. The smaller fraction particularly of strong bars in S0 galaxies is compensated by a larger fraction of ovals/lenses (97$pm$2 % compared to 82-83 % in spirals), many of which might be weakened bars. We also found massive disk-like bulges in nine of the S0 galaxies, bulges which might have formed at an early gas-rich stage of galaxy evolution.
We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the EDisCS survey, covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses ($log M_{star}/ M_{odot}$ ~ 10.5-11.5 dex) and velocity dispersions ($sigma_{star}$ ~ 100-300 , km/s). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the $M_{star}$ from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, $R_{rm e}$), $M_{star}$ and $sigma_{star}$ evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with $z$ can be only partially interpreted as a consequence of the size-redshift evolution. We discuss our results within galaxy formation scenarios, and conclude that the growth in size and DM content which we measure within the last 7 Gyr is incompatible with passive evolution, while it is well reproduced in the multiple minor merger scenario. We also discuss the impact of the IMF on our DM inferences and argue that this can be non-universal with the lookback time. In particular, we find the Salpeter IMF can be better accommodated by low redshift systems, while producing stellar masses at high-$z$ which are unphysically larger than the estimated dynamical masses (particularly for lower-$sigma_{star}$ systems).
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the eccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.