No Arabic abstract
We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the EDisCS survey, covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses ($log M_{star}/ M_{odot}$ ~ 10.5-11.5 dex) and velocity dispersions ($sigma_{star}$ ~ 100-300 , km/s). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the $M_{star}$ from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, $R_{rm e}$), $M_{star}$ and $sigma_{star}$ evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with $z$ can be only partially interpreted as a consequence of the size-redshift evolution. We discuss our results within galaxy formation scenarios, and conclude that the growth in size and DM content which we measure within the last 7 Gyr is incompatible with passive evolution, while it is well reproduced in the multiple minor merger scenario. We also discuss the impact of the IMF on our DM inferences and argue that this can be non-universal with the lookback time. In particular, we find the Salpeter IMF can be better accommodated by low redshift systems, while producing stellar masses at high-$z$ which are unphysically larger than the estimated dynamical masses (particularly for lower-$sigma_{star}$ systems).
Dynamical studies of local ETGs and the Fundamental Plane point to a strong dependence of M/L ratio on luminosity (and stellar mass) with a relation of the form $M/L propto L^{gamma}$. The tilt $gamma$ may be caused by various factors, including stellar population properties, IMF, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform dataset of local ETGs from Prugniel & Simien (1997). We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M/L contributes little to the tilt. We estimate the total M/L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than $M_B sim -20.5$, and increasing with luminosity for the brighter galaxies; we detect no significant differences among S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light, to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamics studies at larger radii.
We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the Universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the SL2S and SLACS surveys and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar IMF across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of an NFW profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at $log{M_*} = 11.5$ and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.
We present the ellipticity distribution and its evolution for early-type galaxies in clusters from z~0.8 to z~0, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS)(0.04<z<0.07), and the ESO Distant Cluster Survey (EDisCS)(0.4<z<0.8). We first investigate a mass limited sample and we find that, above a fixed mass limit, the ellipticity distribution of early-types noticeably evolves with redshift. In the local Universe there are proportionally more galaxies with higher ellipticity, hence flatter, than in distant clusters. This evolution is due partly to the change of the mass distribution and mainly to the change of the morphological mix with z (among the early types, the fraction of ellipticals goes from ~70% at high to ~40% at low-z). Analyzing separately the ellipticity distribution of the different morphological types, we find no evolution both for ellipticals and S0s. However, for ellipticals a change with redshift in the median value of the distributions is detected. This is due to a larger population of very round (e<0.05) elliptical galaxies at low-z. To compare our finding to previous studies, we also assemble a magnitude-delimited sample that consists of early-type galaxies on the red sequence with -19.3>M_B+1.208z>-21. Analyzing this sample, we do not recover exactly the same results of the mass-limited sample. Hence the selection criteria are crucial to characterize the galaxy properties: the choice of the magnitude-delimited sample implies the loss of many less massive galaxies and so it biases the final results. Moreover, although we are adopting the same selection criteria, our results in the magnitude-delimited sample are also not in agreement with those of Holden et al.(2009). This is due to the fact that our and their low-z samples have a different magnitude distribution because the Holden et al.(2009) sample suffers from incompleteness at faint magnitudes.
We have measured the Fundamental Plane (FP) parameters for a sample of 30 field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find that: i) the FP is defined and tight out to the highest redshift bin; ii) the intercept gamma evolves as dgamma/dz=0.58+0.09-0.13 (for Omega=0.3, Omega_{Lambda}=0.7), or, in terms of average effective mass to light ratio, as dlog(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5AA in 22% of an enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with the quiescent population observed in clusters at similar z. We interpret these findings as evidence that a significant fraction of massive field E/S0 experiences secondary episodes of star-formation at z<1.
Two-dimensional integral field surveys such as ATLAS^3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast-rotators and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more realistic cosmological simulations by isolating and analyzing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS^3D data. By constructing remnant profiles of the projected specific angular momentum (lambda_R = <R|V|> / <sqrt(V^2+sigma^2)>, triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS^3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS^3D rotators.