No Arabic abstract
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements were carried out on a multi-layered cuprate superconductor Ba$_2$Ca$_5$Cu$_6$O$_{12}$(O$_{1-x}$,F$_x$)$_2$. STM topography revealed random spot structures with the characteristic length $le 0.5$ nm. The conductance spectra dI/dV(V) show the coexistence of smaller gaps $Delta_S$ and large gaps (pseudogaps) $Delta_L$. The pseudogap-related features in the superconducting state were traced with the spatial resolution of $sim$ 0.07 nm. Here, $I$ and $V$ are the tunnel current and bias voltage, respectively. The temperature, $T$, dependence of $Delta_S$ follows the reduced Bardeen-Cooper-Schrieffer (BCS) dependence. The hallmark ratio 2$Delta_{S}(T=0)/k_B T_c$ equals to 4.9, which is smaller than those of other cuprate superconductors. Here, $T_c$ is the superconducting critical temperature and $k_B$ is the Boltzmann constant. The larger gap $Delta_L$ survives in the normal state and even increases with $T$ above $T_c$. The $T$ dependences of the spatial distributions for both relevant gaps ($Delta$ map), as well as for each gap separately ($Delta_S$ and $Delta_L$) were obtained. From the histogram of $Delta$ map, the averaged gap values were found to be $bar Delta_S = sim 24$ meV and $bar Delta_L = sim 79$ meV. The smaller gap $Delta_S$ shows a spatially homogeneous distribution while the larger gap $Delta_L$ is quite inhomogeneous, indicating that rather homogeneous superconductivity coexists with the patchy distributed pseudogap. The spatial variation length $xi_{Delta_L}$ of $Delta_L$ correlates with the scale of the topography spot structures, being approximately 0.4 nm. This value is considerably smaller than the coherence length of this class of superconductors, suggesting that $Delta_L$ is strongly affected by the disorder of the apical O/F.
We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting samples display a V-shaped superconducting gap, which suggests nodal superconductivity. Furthermore we determined the superconducting coherence length by measuring the spatially resolved superconducting density of states (DOS). Using inelastic tunneling spectroscopy we investigated excitations in the samples with four different phosphorus concentrations. Inelastic peaks are related to bosonic modes. Phonon and non-phonon mechanism for the origin of these peaks are discussed.
The results of EXAFS measurements at 300 K for the superconducting compounds Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ [Tl-1234], TlBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Tl-1212], and CuBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Cu-1234]. are reported. We have measured the EXAFS spectrum for Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ in the range 10K-300K, however here we limit our discussion to the spectrum at 300 K. This material is prepared under high pressure [3.5 GPa] from precursors with small carbon concentrations and exhibits a T$_c$ of $~127$ K. We have also performed ``aging study by looking at XRD for this material after approximately one year. The XRD results at 300 K are ``unchanged. It is of interest to compare the EXAFS spectrum of this compound with the corresponding compound Cu-1234. Remarks on the choice of appropriate EXAFS standard for this and related compounds are also given. Based on our data analysis we quantify disorder in these systems. By using the Cu-O in-plane distance we give values for the microstrain parameter, which can be related to the charge ordering transition.
Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO$_2$ layers in the triple-layer cuprate high-temperature superconductor Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+delta}$ is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anti-crossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing. We find that the $d$-wave superconducting gap of both BQP bands smoothly develops with momentum without abrupt jump in contrast to a previous ARPES study. Hybridization between the BQPs also gradually increases in going from the off-nodal to the anti-nodal region, which is explained by the momentum-dependence of the interlayer single-particle hopping. As possible mechanisms for the enhancement of the superconducting transition temperature, the hybridization between the BQPs, as well as the combination of phonon modes of the triple CuO$_2$ layers and spin fluctuations are discussed.
A first-order phase transition is found in the multilayer cuprate superconductor, HgBa$_2$Ca$_4$Cu$_5$O$_y$ (Hg-1245), with a superconducting transition temperature of 108 K, under zero magnetic field. We observed a hysteretic specific heat jump around 41 K. We conclude that the Bardeen-Cooper-Schrieffer pairs have a residual entropy due to fluctuations in the phase difference between the five CuO$_2$ planes in a unit cell of Hg-1245, and that this fluctuation freezes below the first-order phase transition temperature.
The single electron tunneling spectroscopy on superconductor Na$_{x}$CoO$_2$$cdot$ yH$_2$O and its starting compound Na$_{x}$CoO$_2$ has been studied with point-contact method. The spectra of Na$_{x}$CoO$_2$ have two types of distinct shapes at different random locations, this is attributed to the non-uniformly distributed sodium escaped from the inner part of the sample. While all the measured spectra of the superconducting samples Na$_{x}$CoO$_2$$cdot$ yH$_2$O have a good spatial reproducibility, and show a remarkable zero bias conductance depression appearing below an onset temperature which associates very well with the resistance upturn at around 45 K. The latter behavior resembles in some way the pseudogap feature in high-T$_c$ cuprate uperconductors.