Do you want to publish a course? Click here

Flux growth in a horizontal configuration: an analogue to vapor transport growth

65   0   0.0 ( 0 )
 Added by Jiaqiang Yan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge forming a homogeneous solution before nucleation and growth of crystals take place under proper supersaturation generated by cooling or evaporating the flux. In this work, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the flux melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals are needed but the yield from the conventional vertical flux growth is limited. We applied this technique to the growth of IrSb$_3$, Mo$_3$Sb$_7$, MnBi from self flux, and the growth of FeSe, CrTe$_3$, NiPSe$_3$, FePSe$_3$, and InCuP$_2$S$_6$ from a halide flux.

rate research

Read More

We have developed the laser-diode-heated floating zone (LDFZ) method, in order to improve the broad and inhomogeneous light focusing in the conventional lamp-heated floating zone method, which often causes difficulties in the crystal growth especially for the incongruently melting materials. We have simulated the light focusing properties of the LDFZ method to make irradiated light homogeneous and restricted mostly to the molten zone. We have designed and assembled an LDFZ furnace, and have demonstrated how it works through actual crystal growth. The method is applicable to various kinds of materials, and enables stable and reproducible crystal growth even for the incongruently melting materials. We have succeeded in the crystal growth of representative incongruently melting materials such as BiFeO3 and (La,Ba)2CuO4, which are difficult to grow by the conventional method. Tolerance to the decentering of the sample and highly efficient heating are also established in the LDFZ method.
276 - V. K. Malik , I. Marozau , S. Das 2011
Heteroepitaxial superlattices of [YBa2Cu3O7(n)/ La0.67Ca0.33MnO3(m)]x, where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (LSAT) (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects due to structural transitions at low temperature. The growth dynamics and the structure have been studied in-situ with reflection high energy electron diffraction (RHEED) and ex-situ with scanning transmission electron microscopy (STEM), x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and thus half of their hole doping reservoir. Nevertheless, from electric transport measurements on asuperlattice with n=2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.
115 - G. Q. Zhao , C. J. Lin , Z. Deng 2018
Recently a new type diluted magnetic semiconductor (BaK)(ZnMn)2As2 (BZA) with high Cure temperature (Tc) was discovered showing independent spin and charge doping mechanism. This makes BZA a promising material for spintronics devices. Here we report for the first time the successful growth of BZA single crystal. An Andreev reflection junction that can be used to evaluate spin polarization was fabricated based on the BZA single crystal, a 66% spin polarization of the BZA single crystal was hence obtained by Andreev reflection spectroscopy analysis.
In the crystal growth of transition metal dichalcogenides by the Chemical Vapor Transport method (CVT), the choice of the transport agent plays a key role. We have investigated the effect of various chemical elements and compounds on the growth of TiSe2, MoSe2, TaS2 and TaSe2 and found that pure I2 is the most suitable for growing TiSe2, whereas transition metal chlorides perform best with Mo- and Ta- chalcogenides. The use of TaCl5 as a transport agent in the CVT process allows to selectively growth either polymorph of TaS2 and TaSe2 and the optimum growth conditions are reported. Moreover, by using TaCl5 and tuning the temperature and the halogen starting ratio, it was possible to grow whiskers of the compounds TaS2, TaSe2, TaTe2, TaS3 and TaSe3.
220 - Hao Li , Junku Liu , Nan Guo 2020
Transition metal dichalcogenides (TMDs) are van der Waals layered materials with sizable and tunable bandgaps, offering promising platforms for two-dimensional electronics and optoelectronics. To this end, the bottleneck is how to acquire high-quality single crystals in a facile and efficient manner. As one of the most widely employed method of single-crystal growth, conventional chemical vapor transport (CVT) generally encountered problems including the excess nucleation that leads to small crystal clusters and slow growth rate. To address these issues, a seed crystal is introduced to suppress the nucleation and an inner tube is adopted as both a separator and a flow restrictor, favoring the growth of large-size and high-quality TMD single crystals successfully. Three examples are presented, the effective growth of millimeter-sized MoSe2 and MoTe2 single crystals, and the greatly shortened growth period for PtSe2 single crystal, all of which are synthesized in high quality according to detailed characterizations. The mechanism of seeded CVT is discussed. Furthermore, a phototransistor based on exfoliated multi-layered MoSe2 displays excellent photoresponse in ambient conditions, and considerably rapid rise and fall time of 110 and 125 us are obtained. This work paves the way for developing a facile and versatile method to synthesize high-quality TMD single crystals in laboratory, which could serve as favorable functional materials for potential low-dimensional optoelectronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا