Do you want to publish a course? Click here

Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

187   0   0.0 ( 0 )
 Added by Prajwal Kafle Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained known unknowns. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galacto-centric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the Hierarchical Bayesian scheme, which allows easy marginalisation over the missing data (the proper-motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy ($beta$) and streaming motion ($v_{rm rot}$) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r $lesssim 15$ kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H]$>-1.4$) and the metal-poor ([Fe/H]$leq - 1.4$) MSTO samples show a clear systematic difference in $v_{rm rot} sim 20-40$ km s$^{-1}$, depending on how restrictive the spatial cuts to cull the disk contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. $sigma_r>sigma_theta$ or $sigma_phi$ and $beta simeq 0.5$. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in-situ versus accretion.



rate research

Read More

We report on the discovery of a new Milky Way companion stellar system located at (RA, Dec) = (22h10m43.15s, +14:56:58.8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using CFHT-MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9+1.0-1.6 kpc, with a half-light radius of r_h = 7.24+1.94-1.29 pc and a concentration parameter of c = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log(age) = 10.07+0.05-0.03 and [Fe/H] = -1.58+0.08-0.13 . These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 96 +/- 3 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of MV = -1.21 +/- 0.66. The resulting surface brightness is uV = 25.9 mag/arcsec2 . Its position in the M_V vs. r_h diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster - one of the faintest and lowest mass systems yet identified.
128 - Alis J. Deason 2019
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimensional Gaussians to the Galactic proper motion distributions. The number counts of RGB stars are converted to total stellar halo luminosity using a suite of isochrones weighted by age and metallicity, and by applying a volume correction based on the stellar halo density profile. Our method is tested and calibrated using Galaxia and N-body models. We find a total luminosity (out to 100 kpc) of L_halo = 7.9 +/- 2.0 x 10^8 L_Sun excluding Sgr, and L_halo = 9.4 +/- 2.4 x 10^8 L_Sun including Sgr. These values are appropriate for our adopted stellar halo density profile and metallicity distribution, but additional systematics related to these assumptions are quantified and discussed. Assuming a stellar mass-to-light ratio appropriate for a Kroupa initial mass function (M*/L = 1.5), we estimate a stellar halo mass of M*_halo = 1.4 +/- 0.4 x 10^9 M_Sun. This mass is larger than previous estimates in the literature, but is in good agreement with the emerging picture that the (inner) stellar halo is dominated by one massive dwarf progenitor. Finally, we argue that the combination of a ~10^9 M_Sun mass and an average metallicity of <[Fe/H]> ~ -1.5 for the Galactic halo points to an ancient (~10 Gyr) merger event.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have similar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
Using data from the Galactic All-Sky Survey, we have compared the properties and distribution of HI clouds in the disk-halo transition at the tangent points in mirror-symmetric regions of the first quadrant (QI) and fourth quadrant (QIV) of the Milky Way. Individual clouds are found to have identical properties in the two quadrants. However, there are 3 times as many clouds in QI as in QIV, their scale height is twice as large, and their radial distribution is more uniform. We attribute these major asymmetries to the formation of the clouds in the spiral arms of the Galaxy, and suggest that the clouds are related to star formation in the form of gas that has been lifted from the disk by superbubbles and stellar feedback, and fragments of shells that are falling back to the plane.
Halo stars orbit within the potential of the Milky Way and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively upon assumptions made on the density and the velocity anisotropy profiles of the tracers. Also, there is a degeneracy between the parameters of the halo and that of the disk or bulge. Here, we decompose the Galaxy into bulge, disk and dark matter halo and then model the kinematic data of the halo BHB and K-giants from the SEGUE. Additionally, we use the gas terminal velocity curve and the Sgr A$^*$ proper motion. With $R_odot = 8.5$kpc, our study reveals that the density of the stellar halo has a break at $17.2^{+1.1}_{-1.0}$ kpc, and an exponential cut-off in the outer parts starting at $97.7^{+15.6}_{-15.8}$kpc. Also, we find the velocity anisotropy is radially biased with $beta_s= 0.4pm{0.2}$ in the outer halo. We measure halo virial mass $M_{text{vir}} = 0.80^{+0.31}_{-0.16} times 10^{12} M_{odot}$, concentration $c=21.1^{+14.8}_{-8.3}$, disk mass of $0.95^{+0.24}_{-0.30}times10^{11} M_{odot}$, disk scale length of $4.9^{+0.4}_{-0.4}$ kpc and bulge mass of $0.91^{+0.31}_{-0.38} times 10^{10} M_{odot}$. The mass of halo is found to be small and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion interestingly suggesting a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity $v_{rm esc} = 550.9^{+32.4}_{-22.1}$ kms$^{-1}$ and dark matter density $rho^{rm DM}_{odot} = 0.0088^{+0.0024}_{-0.0018} M_{odot} {rm pc^{-3}} $ ($0.35^{+0.08}_{-0.07}$ GeV cm$^{-3}$) are in good agreement with recent estimates. Some of the above estimates are depended on the adopted value of $R_odot$ and of outer power-law index of the tracer number density.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا