Do you want to publish a course? Click here

On the continuity and differentiability of the (dual) core inverse in C*-algebras

70   0   0.0 ( 0 )
 Added by Enrico Boasso
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The continuity of the core inverse and the dual core inverse is studied in the setting of C*-algebras. Later, this study is specialized to the case of bounded Hilbert space operators and to complex matrices. In addition, the differentiability of these generalized inverses is studied in the context of C*-algebras.



rate research

Read More

164 - Efton Park , Jody Trout 2007
An n-homomorphism between algebras is a linear map $phi : A to B$ such that $phi(a_1 ... a_n) = phi(a_1)... phi(a_n)$ for all elements $a_1, >..., a_n in A.$ Every homomorphism is an n-homomorphism, for all n >= 2, but the converse is false, in general. Hejazian et al. [7] ask: Is every *-preserving n-homomorphism between C*-algebras continuous? We answer their question in the affirmative, but the even and odd n arguments are surprisingly disjoint. We then use these results to prove stronger ones: If n >2 is even, then $phi$ is just an ordinary *-homomorphism. If n >= 3 is odd, then $phi$ is a difference of two orthogonal *-homomorphisms. Thus, there are no nontrivial *-linear n-homomorphisms between C*-algebras.
Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semigroup ring is algebraically amenable but has no F{o}lner sequence. In the context of inverse semigroups $S$ we give a characterization of invariant measures on $S$ (in the sense of Day) in terms of two notions: $domain$ $measurability$ and $localization$. Given a unital representation of $S$ in terms of partial bijections on some set $X$ we define a natural generalization of the uniform Roe algebra of a group, which we denote by $mathcal{R}_X$. We show that the following notions are then equivalent: (1) $X$ is domain measurable; (2) $X$ is not paradoxical; (3) $X$ satisfies the domain F{o}lner condition; (4) there is an algebraically amenable dense *-subalgebra of $mathcal{R}_X$; (5) $mathcal{R}_X$ has an amenable trace; (6) $mathcal{R}_X$ is not properly infinite and (7) $[0] ot=[1]$ in the $K_0$-group of $mathcal{R}_X$. We also show that any tracial state on $mathcal{R}_X$ is amenable. Moreover, taking into account the localization condition, we give several C*-algebraic characterizations of the amenability of $X$. Finally, we show that for a certain class of inverse semigroups, the quasidiagonality of $C_r^*left(Xright)$ implies the amenability of $X$. The converse implication is false.
In the present paper we obtain an intrinsic characterization of real locally C*-algebras (projective limits of projective families of real C*-algebras) among complete real lmc *-algebras, and of locally JB-algebras (projective limits of projective families of JB-algebras) among complete fine Jordan locally multiplicatively-convex topological algebras.
Let $G$ be a locally compact group. It is not always the case that its reduced C*-algebra $C^*_r(G)$ admits a tracial state. We exhibit closely related necessary and sufficient conditions for the existence of such. We gain a complete answer when $G$ compactly generated. In particular for $G$ almost connected, or more generally when $C^*_r(G)$ is nuclear, the existence of a trace is equivalent to amenability. We exhibit two examples of classes of totally disconnected groups for which $C^*_r(G)$ does not admit a tracial state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا