Do you want to publish a course? Click here

Amenability and paradoxicality in semigroups and C*-algebras

318   0   0.0 ( 0 )
 Added by Diego Mart\\'inez
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semigroup ring is algebraically amenable but has no F{o}lner sequence. In the context of inverse semigroups $S$ we give a characterization of invariant measures on $S$ (in the sense of Day) in terms of two notions: $domain$ $measurability$ and $localization$. Given a unital representation of $S$ in terms of partial bijections on some set $X$ we define a natural generalization of the uniform Roe algebra of a group, which we denote by $mathcal{R}_X$. We show that the following notions are then equivalent: (1) $X$ is domain measurable; (2) $X$ is not paradoxical; (3) $X$ satisfies the domain F{o}lner condition; (4) there is an algebraically amenable dense *-subalgebra of $mathcal{R}_X$; (5) $mathcal{R}_X$ has an amenable trace; (6) $mathcal{R}_X$ is not properly infinite and (7) $[0] ot=[1]$ in the $K_0$-group of $mathcal{R}_X$. We also show that any tracial state on $mathcal{R}_X$ is amenable. Moreover, taking into account the localization condition, we give several C*-algebraic characterizations of the amenability of $X$. Finally, we show that for a certain class of inverse semigroups, the quasidiagonality of $C_r^*left(Xright)$ implies the amenability of $X$. The converse implication is false.

rate research

Read More

We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras that arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
70 - Nico Spronk 2018
We consider the Fourier-Stietljes algebra B(G) of a locally compact group G. We show that operator amenablility of B(G) implies that a certain semitolpological compactification of G admits only finitely many idempotents. In the case that G is connected, we show that operator amenability of B(G) entails that $G$ is compact.
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the negative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.
146 - Hun Hee Lee , Xiao Xiong 2019
The Fourier(-Stieltjes) algebras on locally compact groups are important commutative Banach algebras in abstract harmonic analysis. In this paper we introduce a generalization of the above two algebras via twisting with respect to 2-cocycles on the group. We also define and investigate basic properties of the associated multiplier spaces with respect to a pair of 2-cocycles. We finally prove a twisted version of the result of Bo.{z}ejko/Losert/Ruan characterizing amenability of the underlying locally compact group through the comparison of the twisted Fourier-Stieltjes space with the associated multiplier spaces.
Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show that $cenv(A times_{alpha}^{is} bbZ^+) simeq cenv (A) times_{alpha} bbZ$. In contrast, the $ca$-envelope of the familiar contractive semicrossed product $A times_{alpha} bbZ^+ $ may not equal $cenv (A) times_{alpha} bbZ$. Our main tool for calculating $ca$-envelopes for semicrossed products is the concept of a relative semicrossed product of an operator algebra, which we explore in the more general context of injective endomorphisms. As an application, we extend a recent result of Davidson and Katsoulis to tensor algebras of $ca$-correspondences. We show that if $T_{X}^{+}$ is the tensor algebra of a $ca$-correspondence $(X, fA)$ and $alpha$ a completely isometric automorphism of $T_{X}^{+}$ that fixes the diagonal elementwise, then the contractive semicrossed product satisfies $ cenv(T_{X}^{+} times_{alpha} bbZ^+)simeq O_{X} times_{alpha} bbZ$, where $O_{X}$ denotes the Cuntz-Pimsner algebra of $(X, fA)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا