No Arabic abstract
The term `history effect refers to the contribution of any past mass transfer events between a gas bubble and its liquid surroundings towards the current diffusion-driven growth or dissolution dynamics of that same bubble. The history effect arises from the (non-instantaneous) development of the dissolved gas concentration boundary layer in the liquid in response to changes in the concentration at the bubble interface caused, for instance, by variations of the ambient pressure in time. Essentially, the history effect amounts to the acknowledgement that at any given time the mass flux across the bubble is conditioned by the preceding time-history of the concentration at the bubble boundary. Considering the canonical problem of an isolated spherical bubble at rest, we show that the contribution of the history effect in the current interfacial concentration gradient is fully contained within a memory integral of the interface concentration. Retaining this integral term, we formulate a governing differential equation for the bubble dynamics, analogous to the well-known Epstein-Plesset solution. Our equation does not make use of the quasi-static radius approximation. An analytical solution is presented for the case of multiple step-like jumps in pressure. The nature and relevance of the history effect is then assessed through illustrative examples. Finally, we investigate the role of the history effect in rectified diffusion for a bubble that pulsates under harmonic pressure forcing in the non-inertial, isothermal regime.
Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water. We found that the bubble nucleation temperature depends on the gas concentration: the higher the gas concentration, the lower the bubble nucleation temperature. Also, the long-term diffusiondominated bubble growth is governed by the gas concentration. The radius of the bubbles grows as R(t)~t^1/3 for airequilibrated and air-oversaturated water. In contrast, in partially degassed water, the growth is much slower since, even for the highest temperature we achieve, the water remains undersaturated.
Understanding the growth dynamics of the microbubbles produced by plasmonic heating can benefit a wide range of applications like microfluidics, catalysis, micro-patterning and photo-thermal energy conversion. Usually, surface plasmonic bubbles are generated on plasmonic structures pre-deposited on the surface subject to laser heating. In this work, we investigate the growth dynamics of surface microbubbles generated in plasmonic nanoparticle (NP) suspension. We observe much faster bubble growth rates compared to those in pure water with surface plasmonic structures. Our analyses show that the volumetric heating effect around the surface bubble due to the existence of NPs in the suspension is the key to explain this difference. Such volumetric heating increases the temperature around the surface bubble more efficiently compared to surface heating which enhances the expelling of dissolved gas. We also find that the bubble growth rates can be tuned in a very wide range by changing the concentration of NPs, besides laser power and dissolved gas concentration.
Ultrasound is known to enhance surface bubble growth and removal in catalytic and microfluidic applications, yet the contributions of rectified diffusion and microstreaming phenomena towards mass transfer remain unclear. We quantify the effect of ultrasound on the diffusive growth of a single spherical CO$_2$ bubble growing on a substrate in supersaturated water. The time dependent bubble size, shape, oscillation amplitude and microstreaming flow field are resolved. We show and explain how ultrasound can enhance the diffusive growth of surface bubbles by up to two orders of magnitude during volumetric resonance. The proximity of the wall forces the bubble to oscillate non-spherically, thereby generating vigorous streaming during resonance that results in convection-dominated growth.
Recent experiments demonstrate how a soluble body placed in a fluid spontaneously forms a dissolution pinnacle -- a slender, upward pointing shape that resembles naturally occurring karst pinnacles found in stone forests. This unique shape results from the interplay between interface motion and the natural convective flows driven by the descent of relatively heavy solute. Previous investigations suggest these structures to be associated with shock-formation in the underlying evolution equations, with the regularizing Gibbs-Thomson effect required for finite tip curvature. Here, we find a class of exact solutions that act as attractors for the shape dynamics in two and three dimensions. Intriguingly, the solutions exhibit large but finite tip curvature without any regularization, and they agree remarkably well with experimental measurements. The relationship between the dimensions of the initial shape and the final state of dissolution may offer a principle for estimating the age and environmental conditions of geological structures.
The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic rematerials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At entrapment, the microbubble is initially pinned at the edge of the microwell. At some point, the three-phase contact line detaches from one side of the edge and separates from the wall, after which it further recedes. We systematically investigate the evolution of the footprint diameter and the contact angle of the entrapped microbubbles, which reveals that the dissolution process is in the constant contact angle mode. By varying the gas undersaturation level, we quantify how a high gas undersaturation enhances the dissolution process, and compare with simplified theoretical predictions for dissolving bubbles on a plane surface. We find that geometric partial blockage effects of the diffusive flux out of the microbubble trapped in the microwell lead to reduced dissolution rates.