Do you want to publish a course? Click here

Deep-Learning Convolutional Neural Networks for scattered shrub detection with Google Earth Imagery

73   0   0.0 ( 0 )
 Added by Siham Tabik
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

There is a growing demand for accurate high-resolution land cover maps in many fields, e.g., in land-use planning and biodiversity conservation. Developing such maps has been performed using Object-Based Image Analysis (OBIA) methods, which usually reach good accuracies, but require a high human supervision and the best configuration for one image can hardly be extrapolated to a different image. Recently, the deep learning Convolutional Neural Networks (CNNs) have shown outstanding results in object recognition in the field of computer vision. However, they have not been fully explored yet in land cover mapping for detecting species of high biodiversity conservation interest. This paper analyzes the potential of CNNs-based methods for plant species detection using free high-resolution Google Earth T M images and provides an objective comparison with the state-of-the-art OBIA-methods. We consider as case study the detection of Ziziphus lotus shrubs, which are protected as a priority habitat under the European Union Habitats Directive. According to our results, compared to OBIA-based methods, the proposed CNN-based detection model, in combination with data-augmentation, transfer learning and pre-processing, achieves higher performance with less human intervention and the knowledge it acquires in the first image can be transferred to other images, which makes the detection process very fast. The provided methodology can be systematically reproduced for other species detection.



rate research

Read More

Google Earth Engine (GEE) provides a convenient platform for applications based on optical satellite imagery of large areas. With such data sets, the detection of cloud is often a necessary prerequisite step. Recently, deep learning-based cloud detection methods have shown their potential for cloud detection but they can only be applied locally, leading to inefficient data downloading time and storage problems. This letter proposes a method to directly perform cloud detection in Landsat-8 imagery in GEE based on deep learning (DeepGEE-CD). A deep neural network (DNN) was first trained locally, and then the trained DNN was deployed in the JavaScript client of GEE. An experiment was undertaken to validate the proposed method with a set of Landsat-8 images and the results show that DeepGEE-CD outperformed the widely used function of mask (Fmask) algorithm. The proposed DeepGEE-CD approach can accurately detect cloud in Landsat-8 imagery without downloading it, making it a promising method for routine cloud detection of Landsat-8 imagery in GEE.
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNNs architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNNs-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 healthy patients. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84-0.90) and 0.84 (95% CI: 0.76-0.91) at slice level and patient level, respectively.
Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unified approach that integrates these three steps via the use of a deep convolutional neural network that operates directly on the image pixels. We employ the DistBelief implementation of deep neural networks in order to train large, distributed neural networks on high quality images. We find that the performance of this approach increases with the depth of the convolutional network, with the best performance occurring in the deepest architecture we trained, with eleven hidden layers. We evaluate this approach on the publicly available SVHN dataset and achieve over $96%$ accuracy in recognizing complete street numbers. We show that on a per-digit recognition task, we improve upon the state-of-the-art, achieving $97.84%$ accuracy. We also evaluate this approach on an even more challenging dataset generated from Street View imagery containing several tens of millions of street number annotations and achieve over $90%$ accuracy. To further explore the applicability of the proposed system to broader text recognition tasks, we apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the most secure reverse turing tests that uses distorted text to distinguish humans from bots. We report a $99.8%$ accuracy on the hardest category of reCAPTCHA. Our evaluations on both tasks indicate that at specific operating thresholds, the performance of the proposed system is comparable to, and in some cases exceeds, that of human operators.
Convolutional Neural Networks (CNNs) are well established models capable of achieving state-of-the-art classification accuracy for various computer vision tasks. However, they are becoming increasingly larger, using millions of parameters, while they are restricted to handling images of fixed size. In this paper, a quantization-based approach, inspired from the well-known Bag-of-Features model, is proposed to overcome these limitations. The proposed approach, called Convolutional BoF (CBoF), uses RBF neurons to quantize the information extracted from the convolutional layers and it is able to natively classify images of various sizes as well as to significantly reduce the number of parameters in the network. In contrast to other global pooling operators and CNN compression techniques the proposed method utilizes a trainable pooling layer that it is end-to-end differentiable, allowing the network to be trained using regular back-propagation and to achieve greater distribution shift invariance than competitive methods. The ability of the proposed method to reduce the parameters of the network and increase the classification accuracy over other state-of-the-art techniques is demonstrated using three image datasets.
Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا