Do you want to publish a course? Click here

Variable H$^{13}$CO$^+$ Emission in the IM Lup Disk: X-ray Driven Time-Dependent Chemistry?

334   0   0.0 ( 0 )
 Added by L. Ilsedore Cleeves
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO$^+$, within a protoplanetary disk of a T Tauri star. The H$^{13}$CO$^+$ $J=3-2$ rotational transition was observed three times toward IM Lup between July 2014 and May 2015 with the Atacama Large Millimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk integrated $J=3-2$ line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H$^{13}$CO$^+$ emission variation can potentially be explained via X-ray driven chemistry temporarily enhancing the HCO$^+$ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO$^+$ enhancement is indeed caused by a X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.



rate research

Read More

Protoplanetary disk evolution is strongly impacted by ionization from the central star and local environment, which collectively have been shown to drive chemical complexity and are expected to impact the transport of disk material. Nonetheless, ionization remains a poorly constrained input to many detailed modeling efforts. We use new and archival ALMA observations of N$_2$H$^+$ 3--2 and H$^{13}$CO$^+$ 3--2 to derive the first observationally-motivated ionization model for the IM Lup protoplanetary disk. Incorporating ionization from multiple internal and external sources, we model N$_2$H$^+$ and H$^{13}$CO$^+$ abundances under varying ionization environments, and compare these directly to the imaged ALMA observations by performing non-LTE radiative transfer, visibility sampling, and imaging. We find that the observations are best reproduced using a radially increasing cosmic ray (CR) gradient, with low CR ionization in the inner disk, high CR ionization in the outer disk, and a transition at $sim 80 - 100$ au. This location is approximately coincident with the edge of spiral structure identified in millimeter emission. We also find that IM Lup shows evidence for enhanced UV-driven formation of HCO$^+$, which we attribute to the disks high flaring angle. In summary, IM Lup represents the first protoplanetary disk with observational evidence for a CR gradient, which may have important implications for IM Lups on-going evolution, especially given the disks young age and large size.
In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present ALMA observations of the disk around the young star IM Lup in 1.4 mm continuum, C18O 2-1, H13CO+ 3-2 and DCO+ 3-2 emission at ~0.5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO+ line exhibits a striking pair of concentric rings of emission that peak at radii of ~0.6 and 2 (~90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO+ ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO+ ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H2D+ to form the observed DCO+ outer ring. These observations demonstrate that spatially resolved DCO+ emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.
We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
It is key to constrain the gas surface density distribution, Sigma_gas, as function of disk radius in protoplanetary disks. In this work we investigate if spatially resolved observations of rarer CO isotopologues may be good tracers of Sigma_gas. Physical-chemical models with different input Sigma_gas(R) are run. The input disk surface density profiles are compared with the simulated 13CO intensity radial profiles to check if and where the two follow each other. There is always an intermediate region in the disk where the slope of the 13CO radial emission profile and Sigma_gas(R) coincide. At small radii the line radial profile underestimates Sigma_gas, as 13CO emission becomes optically thick. The same happens at large radii where the column densities become too low and 13CO is not able to efficiently self-shield. If the gas surface density profile is a simple power-law of the radius, the input power-law index can be retrieved within 20% uncertainty if one choses the proper radial range. If instead Sigma_gas(R) follows the self-similar solution for a viscously evolving disk, retrieving the input power-law index becomes challenging, in particular for small disks. Nevertheless, it is found that the power-law index can be in any case reliably fitted at a given line intensity contour around 6 K km/s, and this produces a practical method to constrain the slope of Sigma_gas(R). Application of such a method is shown in the case study of the TW Hya disk. Spatially resolved 13CO line radial profiles are promising to probe the disk surface density distribution, as they directly trace Sigma_gas(R)profile at radii well resolvable by ALMA. There, chemical processes like freeze-out and isotope selective photodissociation do not affect the emission, and, assuming that the volatile carbon does not change with radius, no chemical model is needed when interpreting the observations.
EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1-5 magnitudes at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the $^{12}$CO J=3-2 and 4-3 lines, and the $^{13}$CO 3-2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model, and compare the obtained parameters with corresponding ones of other T Tauri disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا