Do you want to publish a course? Click here

Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup

61   0   0.0 ( 0 )
 Added by Karin Oberg
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present ALMA observations of the disk around the young star IM Lup in 1.4 mm continuum, C18O 2-1, H13CO+ 3-2 and DCO+ 3-2 emission at ~0.5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO+ line exhibits a striking pair of concentric rings of emission that peak at radii of ~0.6 and 2 (~90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO+ ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO+ ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H2D+ to form the observed DCO+ outer ring. These observations demonstrate that spatially resolved DCO+ emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.



rate research

Read More

We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO$^+$, within a protoplanetary disk of a T Tauri star. The H$^{13}$CO$^+$ $J=3-2$ rotational transition was observed three times toward IM Lup between July 2014 and May 2015 with the Atacama Large Millimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk integrated $J=3-2$ line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H$^{13}$CO$^+$ emission variation can potentially be explained via X-ray driven chemistry temporarily enhancing the HCO$^+$ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO$^+$ enhancement is indeed caused by a X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.
Protoplanetary disk evolution is strongly impacted by ionization from the central star and local environment, which collectively have been shown to drive chemical complexity and are expected to impact the transport of disk material. Nonetheless, ionization remains a poorly constrained input to many detailed modeling efforts. We use new and archival ALMA observations of N$_2$H$^+$ 3--2 and H$^{13}$CO$^+$ 3--2 to derive the first observationally-motivated ionization model for the IM Lup protoplanetary disk. Incorporating ionization from multiple internal and external sources, we model N$_2$H$^+$ and H$^{13}$CO$^+$ abundances under varying ionization environments, and compare these directly to the imaged ALMA observations by performing non-LTE radiative transfer, visibility sampling, and imaging. We find that the observations are best reproduced using a radially increasing cosmic ray (CR) gradient, with low CR ionization in the inner disk, high CR ionization in the outer disk, and a transition at $sim 80 - 100$ au. This location is approximately coincident with the edge of spiral structure identified in millimeter emission. We also find that IM Lup shows evidence for enhanced UV-driven formation of HCO$^+$, which we attribute to the disks high flaring angle. In summary, IM Lup represents the first protoplanetary disk with observational evidence for a CR gradient, which may have important implications for IM Lups on-going evolution, especially given the disks young age and large size.
We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
This work aims to understand which midplane conditions are probed by the DCO$^+$ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO$^+$ formation pathways to the gas temperature and the CO abundance. The DCO$^+$ $J$=3-2 transition was observed with ALMA at a spatial resolution of 0.3. The HD 169142 DCO$^+$ radial intensity profile reveals a warm, inner component at radii <30 AU and a broad, ring-like structure from ~50-230 AU with a peak at 100 AU just beyond the millimeter grain edge. We modeled DCO$^+$ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO$^+$ through the cold deuterium fractionation pathway via H$_2$D$^+$. Contributions from the warm deuterium fractionation pathway via CH$_2$D$^+$ are approximated using a constant abundance in the intermediate disk layers. Parameterized models show that alterations to the midplane gas temperature and CO abundance of the literature model are both needed to recover the observed DCO$^+$ radial intensity profile. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in gas temperature and a factor of five CO depletion just beyond the millimeter grain edge, and a 2 K decrease in gas temperature for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO$^+$ abundance of 2.0$times$10$^{-12}$ between 30-70 K. The DCO$^+$ emission probes a reservoir of cold material in the HD 169142 outer disk that is not revealed by the millimeter continuum, the SED, nor the emission from the 12CO, 13CO, or C18O $J$=2-1 lines.
We have searched for presence of current star formation in outer stellar rings of early-type disk (S0-Sb) galaxies by inspecting a representative sample of nearby galaxies with rings from the recent Spitzer catalog ARRAKIS (Comeron et al. 2014). We have found that regular rings (of R-type) reveal young stellar population with the age of less than 200~Myr in about half of all the cases, while in the pseudorings (open rings, R), which inhabit only spiral galaxies, current star formation proceeds almost always.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا