Do you want to publish a course? Click here

Cavity mediated manipulation of distant spin currents using cavity-magnon-polariton

241   0   0.0 ( 0 )
 Added by Lihui Bai Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.



rate research

Read More

A photon-magnon hybrid system can be realised by coupling the electron spin resonance of a magnetic material to a microwave cavity mode. The quasiparticles associated with the system dynamics are the cavity magnon polaritons, which arise from the mixing of strongly coupled magnons and photons. We illustrate how these particles can be used to probe the magnetisation of a sample with a remarkable sensitivity, devising suitable spin-magnetometers which ultimately can be used to directly assess oscillating magnetic fields. Specifically, the capability of cavity magnon polaritons of converting magnetic excitations to electromagnetic ones, allows for translating to magnetism the quantum-limited sensitivity reached by state-of-the-art electronics. Here we employ hybrid systems composed of microwave cavities and ferrimagnetic spheres, to experimentally implement two types of novel spin-magnetometers.
Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
We investigate long-range coherent and dissipative coupling between two spatially separated magnets while both are coupled to a microwave cavity. A careful examination of the system shows that the indirect interaction between two magnon modes is dependent on their individual mechanisms of direct coupling to the cavity. If both magnon modes share the same form of coupling to the cavity (either coherent or dissipative), then the indirect coupling between them will produce level repulsion. Conversely, if the magnon modes have different forms of coupling to the cavity (one coherent and one dissipative), then their indirect coupling will produce level attraction. We further demonstrate the cavity-mediate nature of the indirect interaction through investigating the dependence of the indirect coupling strength on the frequency detuning between the magnon and cavity modes. Our work theoretically and experimentally explores indirect cavity mediate interactions in systems exhibiting both coherent and dissipative coupling, which opens a new avenue for controlling and utilizing light-matter interactions.
62 - B. M. Yao , Y. S. Gui , Y. Xiao 2015
We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in a 1D configuration, created by inserting a low damping magnetic insulator into a high-quality 1D microwave cavity. By simplifying the full-wave simulation based on the transfer matrix approach in the long wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample, determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are confirmed by experimental data. Our work provide a detailed understanding of the 1D CMP, which could help to engineer coupled magnon-photon system.
The full coherent control of hybridized systems such as strongly coupled cavity photon-magnon states is a crucial step to enable future information processing technologies. Thus, it is particularly interesting to engineer deliberate control mechanisms such as the full control of the coupling strength as a measure for coherent information exchange. In this work, we employ cavity resonator spectroscopy to demonstrate the complete control of the coupling strength of hybridized cavity photon-magnon states. For this, we use two driving microwave inputs which can be tuned at will. Here, only the first input couples directly to the cavity resonator photons, whilst the second tone exclusively acts as a direct input for the magnons. For these inputs, both the relative phase $phi$ and amplitude $delta_0$ can be independently controlled. We demonstrate that for specific quadratures between both tones, we can increase the coupling strength, close the anticrossing gap, and enter a regime of level merging. At the transition, the total amplitude is enhanced by a factor of 1000 and we observe an additional linewidth decrease of $13%$ at resonance due to level merging. Such control of the coupling, and hence linewidth, open up an avenue to enable or suppress an exchange of information and bridging the gap between quantum information and spintronics applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا