Do you want to publish a course? Click here

Theory and experiment on cavity magnon polariton in the 1D configuration

63   0   0.0 ( 0 )
 Added by Bimu Yao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in a 1D configuration, created by inserting a low damping magnetic insulator into a high-quality 1D microwave cavity. By simplifying the full-wave simulation based on the transfer matrix approach in the long wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample, determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are confirmed by experimental data. Our work provide a detailed understanding of the 1D CMP, which could help to engineer coupled magnon-photon system.



rate research

Read More

The full coherent control of hybridized systems such as strongly coupled cavity photon-magnon states is a crucial step to enable future information processing technologies. Thus, it is particularly interesting to engineer deliberate control mechanisms such as the full control of the coupling strength as a measure for coherent information exchange. In this work, we employ cavity resonator spectroscopy to demonstrate the complete control of the coupling strength of hybridized cavity photon-magnon states. For this, we use two driving microwave inputs which can be tuned at will. Here, only the first input couples directly to the cavity resonator photons, whilst the second tone exclusively acts as a direct input for the magnons. For these inputs, both the relative phase $phi$ and amplitude $delta_0$ can be independently controlled. We demonstrate that for specific quadratures between both tones, we can increase the coupling strength, close the anticrossing gap, and enter a regime of level merging. At the transition, the total amplitude is enhanced by a factor of 1000 and we observe an additional linewidth decrease of $13%$ at resonance due to level merging. Such control of the coupling, and hence linewidth, open up an avenue to enable or suppress an exchange of information and bridging the gap between quantum information and spintronics applications.
A photon-magnon hybrid system can be realised by coupling the electron spin resonance of a magnetic material to a microwave cavity mode. The quasiparticles associated with the system dynamics are the cavity magnon polaritons, which arise from the mixing of strongly coupled magnons and photons. We illustrate how these particles can be used to probe the magnetisation of a sample with a remarkable sensitivity, devising suitable spin-magnetometers which ultimately can be used to directly assess oscillating magnetic fields. Specifically, the capability of cavity magnon polaritons of converting magnetic excitations to electromagnetic ones, allows for translating to magnetism the quantum-limited sensitivity reached by state-of-the-art electronics. Here we employ hybrid systems composed of microwave cavities and ferrimagnetic spheres, to experimentally implement two types of novel spin-magnetometers.
In the emerging field of cavity optomagnonics, photons are coupled coherently to magnons in solid-state systems. These new systems are promising for implementing hybrid quantum technologies. Being able to prepare Fock states in such platforms is an essential step towards the implementation of quantum information schemes. We propose a magnon-heralding protocol to generate a magnon Fock state by detecting an optical cavity photon. Due to the peculiarities of the optomagnonic coupling, the protocol involves two distinct cavity photon modes. Solving the quantum Langevin equations of the coupled system, we show that the temporal scale of the heralding is governed by the magnon-photon cooperativity and derive the requirements for generating high fidelity magnon Fock states. We show that the nonclassical character of the heralded state, which is imprinted in the autocorrelation of an optical read mode, is only limited by the magnon lifetime for small enough temperatures. We address the detrimental effects of nonvacuum initial states, showing that high fidelity Fock states can be achieved by actively cooling the system prior to the protocol.
Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.
209 - M. D. Martin , E. Rozas , C. Anton 2020
In this manuscript we will gather clear experimental evidences of remote coherence between two polariton condensate droplets that have never overlapped in real space and discuss how these interferences in momentum space can be used to estimate the critical temperature for the BEC like transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا