No Arabic abstract
End-to-end training of automated speech recognition (ASR) systems requires massive data and compute resources. We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data. We conduct several systematic experiments adapting a Wav2Letter convolutional neural network originally trained for English ASR to the German language. We show that this technique allows faster training on consumer-grade resources while requiring less training data in order to achieve the same accuracy, thereby lowering the cost of training ASR models in other languages. Model introspection revealed that small adaptations to the networks weights were sufficient for good performance, especially for inner layers.
Recurrent neural networks (RNNs) have shown clear superiority in sequence modeling, particularly the ones with gated units, such as long short-term memory (LSTM) and gated recurrent unit (GRU). However, the dynamic properties behind the remarkable performance remain unclear in many applications, e.g., automatic speech recognition (ASR). This paper employs visualization techniques to study the behavior of LSTM and GRU when performing speech recognition tasks. Our experiments show some interesting patterns in the gated memory, and some of them have inspired simple yet effective modifications on the network structure. We report two of such modifications: (1) lazy cell update in LSTM, and (2) shortcut connections for residual learning. Both modifications lead to more comprehensible and powerful networks.
Automatic speech recognition (ASR) via call is essential for various applications, including AI for contact center (AICC) services. Despite the advancement of ASR, however, most publicly available call-based speech corpora such as Switchboard are old-fashioned. Also, most existing call corpora are in English and mainly focus on open domain dialog or general scenarios such as audiobooks. Here we introduce a new large-scale Korean call-based speech corpus under a goal-oriented dialog scenario from more than 11,000 people, i.e., ClovaCall corpus. ClovaCall includes approximately 60,000 pairs of a short sentence and its corresponding spoken utterance in a restaurant reservation domain. We validate the effectiveness of our dataset with intensive experiments using two standard ASR models. Furthermore, we release our ClovaCall dataset and baseline source codes to be available via https://github.com/ClovaAI/ClovaCall.
Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions.
We propose and evaluate new techniques for compressing and speeding up dense matrix multiplications as found in the fully connected and recurrent layers of neural networks for embedded large vocabulary continuous speech recognition (LVCSR). For compression, we introduce and study a trace norm regularization technique for training low rank factor
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, EmoSet contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemars test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at https://github.com/EIHW/EmoNet. EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.