Do you want to publish a course? Click here

Single-atom heat machines enabled by energy quantization

237   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantization of energy is a quintessential characteristic of quantum systems. Here we analyze its effects on the operation of Otto cycle heat machines and show that energy quantization alone may alter and increase machine performance in terms of output power, efficiency, and even operation mode. Our results demonstrate that quantum thermodynamics enable the realization of classically inconceivable Otto machines, such as those with an incompressible working fluid. We propose to measure these effects experimentally using a laser-cooled trapped ion as a microscopic heat machine.



rate research

Read More

We investigate the question whether Michelson type interferometry is possible if the role of the beam splitter is played by a spontaneous process. This question arises from an inspection of trajectories of atoms bouncing inelastically from an evanescent-wave (EW) mirror. Each final velocity can be reached via two possible paths, with a {it spontaneous} Raman transition occurring either during the ingoing or the outgoing part of the trajectory. At first sight, one might expect that the spontaneous character of the Raman transfer would destroy the coherence and thus the interference. We investigated this problem by numerically solving the Schrodinger equation and applying a Monte-Carlo wave-function approach. We find interference fringes in velocity space, even when random photon recoils are taken into account.
We study the statistics of the lasing output from a single atom quantum heat engine, which was originally proposed by Scovil and Schulz-DuBois (SSDB). In this heat engine model, a single three-level atom is strongly coupled with an optical cavity, and contacted with a hot and a cold heat bath together. We derive a fully quantum laser equation for this heat engine model, and obtain the photon number distribution for both below and above the lasing threshold. With the increase of the hot bath temperature, the population is inverted and lasing light comes out. However, we notice that if the hot bath temperature keeps increasing, the atomic decay rate is also enhanced, which weakens the lasing gain. As a result, another critical point appears at a very high temperature of the hot bath, after which the output light become thermal radiation again. To avoid this double-threshold behavior, we introduce a four-level heat engine model, where the atomic decay rate does not depend on the hot bath temperature. In this case, the lasing threshold is much easier to achieve, and the double-threshold behavior disappears.
64 - M. S. Kim 2001
A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle the qubits which are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.
We propose to couple single atomic qubits to photons incident on a cavity containing an atomic ensemble of a different species that mediates the coupling via Rydberg interactions. Subject to a classical field and the cavity field, the ensemble forms a collective dark state which is resonant with the input photon, while excitation of a qubit atom leads to a secondary dark state that splits the cavity resonance. The two different dark state mechanisms yield zero and $pi$ reflection phase shifts and can be used to implement quantum gates between atomic and optical qubits.
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existence of a finite rise time in the probability of excitation of the atom during the absorption event which is infinitely fast in previous Markov theories. This rise time is governed by the bandwidth of the atom-field interaction spectrum and leads to a fundamental jitter in time-stamping the absorption event. Our theoretical framework captures both the weak and strong atom-field coupling regimes and sheds light on the spectral matching between the interaction bandwidth and single photon Fock state pulse spectrum. Our work opens questions whether such jitter in the absorption event can be observed in a multi-mode realistic single photon detector. Finally, we also shed light on the fundamental differences between linear and nonlinear detector outputs for single photon Fock state vs. coherent state pulses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا