No Arabic abstract
We compile a sample of spectroscopically- and photometrically-selected cluster galaxies from four high-redshift galaxy clusters ($1.59 < z < 1.71$) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the textit{Hubble Space Telescope} we classify potential mergers involving massive ($M_* geq 3times 10^{10}mathrm{M}_odot$) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, $11.0 ^{+7.0}_{-5.6}%$ of the cluster members are involved in potential mergers, compared to $24.7^{+5.3}_{-4.6}%$ of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.
Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called ``jellyfish galaxies, that exhibit tentacles of debris material with a characteristic jellyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z=0.04-0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion sigma or X-ray luminosity L_X. Interestingly, convincing cases of candidates are also found in groups and lower mass haloes (10^{11}-10^{14} M_{sun}), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M_{sun} < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5 sigma) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that the stripping phenomenon is ubiquitous in clusters and could be present even in groups and low mass haloes. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.
The Planck satellite has detected cluster candidates via the Sunyaev Zeldovich (SZ) effect, but the optical follow-up required to confirm these candidates is still incomplete, especially at high redshifts and for SZ detections at low significance. In this work we present our analysis of optical observations obtained for 32 Planck cluster candidates using ACAM on the 4.2-m William Herschel Telescope. These cluster candidates were preselected using SDSS, WISE, and Pan-STARRS images to likely represent distant clusters at redshifts $z gtrsim 0.7$. We obtain photometric redshift and richness estimates for all of the cluster candidates from a red-sequence analysis of $r$-, $i$-, and $z$-band imaging data. In addition, long-slit observations allow us to measure the redshifts of a subset of the clusters spectroscopically. The optical richness is often lower than expected from the inferred SZ mass when compared to scaling relations previously calibrated at low redshifts. This likely indicates the impact of Eddington bias and projection effects or noise-induced detections, especially at low SZ-significance. Thus, optical follow-up not only provides redshift measurements, but also an important independent verification method. We find that 18 (7) of the candidates at redshifts $z > 0.5$ ($z > 0.8$) are at least half as rich as expected from scaling relations, thereby clearly confirming these candidates as massive clusters. While the complex selection function of our sample due to our preselection hampers its use for cosmological studies, we do provide a validation of massive high-redshift clusters particularly suitable for further astrophysical investigations.
Ultra-steep spectrum (USS) radio sources are good tracers of powerful radio galaxies at $z > 2$. Identification of even a single bright radio galaxy at $z > 6$ can be used to detect redshifted 21cm absorption due to neutral hydrogen in the intervening IGM. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TGSS ADR1 survey at 150 MHz. We employ USS selection ($alpha le -1.3$) in $sim10000$ square degrees, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density ($50 < S_{textrm{150}} < 200$ mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of $1.3$ arcseconds ($$) revealed $sim 48%$ of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for ten sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multi-wavelength photometry and ancillary radio data are available and for one of these we find a best-fit photo-z of $4.8 pm 2.0$. The other source has $z_{textrm{phot}}=1.4 pm 0.1$ and a small angular size ($3.7$), which could be associated with an obscured star forming galaxy or with a dead elliptical. One USS radio source not part of the HzRG sample but observed with the VLA nonetheless is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of $1.8pm0.5$, indicating a size of 875 kpc.
Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas-rich but inefficient at forming stars: a dark galaxy phase. Here, we report the results of our MUSE (Multi Unit Spectroscopic Explorer) survey for dark galaxies fluorescently illuminated by quasars at $z>3$. Compared to previous studies which are based on deep narrow-band (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW$_{0}$) distributions of the Ly$alpha$ sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high EW$_{0}$ objects and the quasars. This correlation is not seen in other properties such as Ly$alpha$ luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find 6 sources without continuum counterparts and EW$_{0}$ limits larger than $240,mathrm{AA}$ that are the best candidates for dark galaxies in our survey at $z>3.5$. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to previously detected candidates at $zapprox2.4$ in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of $t=60$ Myr on the quasar lifetime.
The early stage of massive galaxy evolution often involves outflows driven by a starburst or a central quasar plus cold mode accretion (infall), which adds to the mass build-up in the galaxies. To study the nature of these infall and outflows in the quasar environments, we have examined the correlation of narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties, such as their broad absorption-line (BAL) outflows and radio-loudness, using spectral data from SDSS-BOSS DR12. Our results show that the incidence of associated absorption lines (AALs) and outflow AALs is strongly correlated with BALs, which indicates most AALs form in quasar-driven outflows. Multiple AALs are also strongly correlated with BALs, demonstrating quasar outflows tend to be highly structured and can create multiple gas components with different velocity shifts along our line of sight. Infall AALs appear less often in quasars with BALs than quasars without BALs. This suggests that BAL outflows act on large scale in host galaxies and inhibit the infall of gas from the IGM, supporting theoretical models in which quasar outflow plays an important role in the feedback to host galaxies. Despite having larger distances, infall AALs are more highly ionized than outflow AALs, which can be attributed to the lower densities in the infall absorbers.