Do you want to publish a course? Click here

(Non) equilibrium dynamics: a (broken) symmetry of the Keldysh generating functional

63   0   0.0 ( 0 )
 Added by Camille Aron
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We unveil the universal (model-independent) symmetry satisfied by Schwinger-Keldysh quantum field theories whenever they describe equilibrium dynamics. This is made possible by a generalization of the Schwinger-Keldysh path-integral formalism in which the physical time can be re-parametrized to arbitrary contours in the complex plane. Strong relations between correlation functions, such as the fluctuation-dissipation theorems, are derived as immediate consequences of this symmetry of equilibrium. In this view, quantum non-equilibrium dynamics -- e.g. when driving with a time-dependent potential -- are seen as symmetry-breaking processes. The symmetry-breaking terms of the action are identified as a measure of irreversibility, or entropy creation, defined at the level of a single quantum trajectory. Moreover, they are shown to obey quantum fluctuation theorems. These results extend stochastic thermodynamics to the quantum realm.



rate research

Read More

The time evolution of an extended quantum system can be theoretically described in terms of the Schwinger-Keldysh functional integral formalism, whose action conveniently encodes the information about the dynamics. We show here that the action of quantum systems evolving in thermal equilibrium is invariant under a symmetry transformation which distinguishes them from generic open systems. A unitary or dissipative dynamics having this symmetry naturally leads to the emergence of a Gibbs thermal stationary state. Moreover, the fluctuation-dissipation relations characterizing the linear response of an equilibrium system to external perturbations can be derived as the Ward-Takahashi identities associated with this symmetry. Accordingly, the latter provides an efficient check for the onset of thermodynamic equilibrium and it makes testing the validity of fluctuation-dissipation relations unnecessary. In the classical limit, this symmetry renders the one which is known to characterize equilibrium in the stochastic dynamics of classical systems coupled to thermal baths, described by Langevin equations.
130 - Jen-Tsung Hsiang , B. L. Hu 2020
A definition of nonequilibrium free energy $mathcal{F}_{textsc{s}}$ is proposed for dynamical Gaussian quantum open systems strongly coupled to a heat bath and a formal derivation is provided by way of the generating functional in terms of the coarse-grained effective action and the influence action. For Gaussian open quantum systems exemplified by the quantum Brownian motion model studied here, a time-varying effective temperature can be introduced in a natural way, and with it, the nonequilibrium free energy $mathcal{F}_{textsc{s}}$, von Neumann entropy $mathcal{S}_{vN}$ and internal energy $mathcal{U}_{textsc{s}}$ of the reduced system ($S$) can be defined accordingly. In contrast to the nonequilibrium free energy found in the literature which references the bath temperature, the nonequilibrium thermodynamic functions we find here obey the familiar relation $mathcal{F}_{textsc{s}}(t)=mathcal{U}_{textsc{s}}(t)- T_{textsc{eff}} (t),mathcal{S}_{vN}(t)$ {it at any and all moments of time} in the systems fully nonequilibrium evolution history. After the system equilibrates they coincide, in the weak coupling limit, with their counterparts in conventional equilibrium thermodynamics. Since the effective temperature captures both the state of the system and its interaction with the bath, upon the systems equilibration, it approaches a value slightly higher than the initial bath temperature. Notably, it remains nonzero for a zero-temperature bath, signaling the existence of system-bath entanglement. Reasonably, at high bath temperatures and under ultra-weak couplings, it becomes indistinguishable from the bath temperature. The nonequilibrium thermodynamic functions and relations discovered here for dynamical Gaussian quantum systems should open up useful pathways toward establishing meaningful theories of nonequilibrium quantum thermodynamics.
The study of the entanglement dynamics plays a fundamental role in understanding the behaviour of many-body quantum systems out of equilibrium. In the presence of a globally conserved charge, further insights are provided by the knowledge of the resolution of entanglement in the various symmetry sectors. Here, we carry on the program we initiated in Phys. Rev. B 103, L041104 (2021), for the study of the time evolution of the symmetry resolved entanglement in free fermion systems. We complete and extend our derivations also by defining and quantifying a symmetry resolved mutual information. The entanglement entropies display a time delay that depends on the charge sector that we characterise exactly. Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size. Furthermore, we argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement, and hence we expect that a proper adaptation of our results should apply to a large class of integrable systems. We also find that the number entropy grows logarithmically with time before saturating to a value proportional to the logarithm of the subsystem size.
The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the directed percolation universality class can be observed in an atomic system with long range interactions. Moreover, we demonstrate that even mesoscopic ensembles --- which are currently studied experimentally --- are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.
145 - D. Lacoste , P. Gaspard 2014
We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condensed-matter physics systems. Here, we establish these relations for magnetic systems and nematic liquid crystals in a symmetry-breaking external field, and we illustrate them on the Curie-Weiss and the $XY$ models. Our relations also have implications for spontaneous symmetry breaking, which are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا