Do you want to publish a course? Click here

Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

166   0   0.0 ( 0 )
 Added by Phil Rosenow
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The root of this lies in the strong distortion N atoms exert on most host materials. Here, we resolve these issues by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, we show that the distortion field of a single N atom must be allowed to decrease so far, that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing to compute band gaps in very good agreement with experimentally derived reference values. These results open up the field of dilute nitride compound semiconductors to predictive ab initio calculations.



rate research

Read More

We report the compositional dependence of the electronic band structure for a range of III-V alloys. Density functional theory with the PBE functional is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin zone. The HSE hybrid functional with screened exchange accurately reproduces the experimental band gaps and, more importantly, the alloy concentration of the direct-indirect gap crossovers for the III-V alloys studied here: AlGaAs, InAlAs, AlInP, InGaP, and GaAsP.
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
150 - L. D. Marks , D. R. Luke 2008
We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided by general mathematical principles and the underlying physics, we propose a multisecant form of Broydens second method for solving the self-consistent field equations of Kohn-Sham density functional theory. The algorithm is robust, requires relatively little finetuning and appears to outperform the current state of the art, converging for cases that defeat many other methods. We compare our technique to the conventional methods for problems ranging from simple to nearly pathological.
A degenerate perturbation $kcdot p$ approach for effective mass calculations is implemented in the all-electron density functional theory (DFT) package WIEN2k. The accuracy is tested on major group IVA, IIIA-VA, and IIB-VIA semiconductor materials. Then, the effective mass in graphene and CuI with defects is presented as illustrative applications. For states with significant Cu-d character additional local orbitals with higher principal quantum numbers (more radial nodes) have to be added to the basis set in order to converge the results of the perturbation theory. Caveats related to a difference between velocity and momentum matrix elements are discussed in the context of application of the method to non-local potentials, such as Hartree-Fock/DFT hybrid functionals and DFT+U.
In this work the complete valence-band structure of the molybdenum dichalcogenides MoS_2, MoSe_2, and alpha-MoTe_2 is presented and discussed in comparison. The valence bands have been studied using both angle-resolved photoelectron spectroscopy (ARPES) with synchrotron radiation, as well as, ab-initio band-structure calculations. The ARPES measurements have been carried out in the constant-final-state (CFS) mode. The results of the calculations show in general very good agreement with the experimentally determined valence-band structures allowing for a clear identification of the observed features. The dispersion of the valence bands as a function of the perpendicular component k_perp of the wave vector reveals a decreasing three-dimensional character from MoS_2 to alpha-MoTe_2 which is attributed to an increasing interlayer distance in the three compounds. The effect of this k_perp dispersion on the determination of the exact dispersion of the individual states as a function of k_parallel is discussed. By performing ARPES in the CFS mode the k_parallel-component for off-normal emission spectra can be determined. The corresponding k_perp-value is obtained from the symmetry of the spectra along the GammaA, KH, and ML line, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا