Do you want to publish a course? Click here

A Dynamically Reconfigurable Terahertz Array Antenna for Near-field Imaging Applications

77   0   0.0 ( 0 )
 Added by Maksim Skorobogatiy
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A proof of concept for high speed near-field imaging with sub-wavelength resolution using SLM is presented. An 8 channel THz detector array antenna with an electrode gap of 100 um and length of 5 mm is fabricated using the commercially available GaAs semiconductor substrate. Each array antenna can be excited simultaneously by spatially reconfiguring the optical probe beam and the THz electric field can be recorded using 8 channel lock-in amplifiers. By scanning the probe beam along the length of the array antenna, a 2D image can be obtained with amplitude, phase and frequency information.



rate research

Read More

Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution, allowing intriguing scientific phenomena to be explored such as charge carrier dynamics in nanostructures and THz plasmon-polaritons in novel 2D materials and devices. High-resolution THz imaging, so far, has been relying predominantly on THz detection techniques that require either an ultrafast laser or a cryogenically-cooled THz detector. Here, we demonstrate coherent near-field imaging in the THz frequency range using a room-temperature nanodetector embedded in the aperture of a near-field probe, and an interferometric optical setup driven by a THz quantum cascade laser (QCL). By performing phase-sensitive imaging of strongly confined THz fields created by plasmonic focusing we demonstrate the potential of our novel architecture for high-sensitivity coherent THz imaging with sub-wavelength spatial resolution.
Intense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresponses have not yet been discovered in light-emitting diodes (LEDs), letting alone employing them as fast, cost effective,compact, and room-temperature-operating THz detectors and cameras. Here we report ubiquitously available LEDs exhibited gigantic and fast photovoltaic signals with excellent signal-to-noise ratios when being illuminated by THz field strengths >50 kV/cm. We also successfully demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (>1 kV/W) with response time shorter than those of pyroelectric detectors by four orders of magnitude. The detection mechanism was attributed to THz-field-induced nonlinear impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also greatly contribute to the applications of strong-field THz diagnosis.
Terahertz (THz) technology is promising in several applications such as imaging, spectroscopy and communications. Among several methods in the generation and detection of THz waves, a THz time domain system (TDS) that is developed using photoconductive antennas (PCA) as emitter and detector presents several advantages such as simple alignment, low cost, high performance etc. In this work, we report the design, fabrication and characterization of a 2-D PCA array that is capable of detecting both the amplitude and phase of the THz pulse. The PCA array is fabricated using LT-GaAs and has 8 channels with 64 pixels (8x8). The infrared probe beam is steered and focused towards each pixel of the PCA array using a spatial light modulator (SLM). The measured photocurrent (amplitude and phase) from each channel is recorded separately and the frequencies up to 1.4 THz can be detected. Furthermore, the parameters such as directional time delay of the THz pulse, crosstalk between the channels etc., were characterized. Finally, we show that the proposed 2D PCA array design is flexible and can be used for accelerated THz spectral image acquisition.
The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and are implemented based on the nanopatterning of an optical surface. The challenge faced by metalens research is to reach high levels of performance, using simple fabrication methods suitable for mass-production. In this paper we present a Huygens nanoantenna based metalens, designed for outdoor photographic/surveillance applications in the near-infra-red. We show that good imaging quality can be obtained over a field-of-view (FOV) as large as +/-15 degrees. This first successful implementation of metalenses for outdoor imaging applications is expected to provide insight and inspiration for future metalens imaging applications.
Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to biochemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming and dynamical wavelength control -- using, for example, thermal effects, free carrier injection, low temperature gas condensation, and immersion in fluids -- have been explored. However, these methods are often limited by small tuning ranges, high power consumption, or the inability to tune continuously or reversibly. In this letter, by combining nano-electro-mechanical systems (NEMS) and nanophotonics, we demonstrate reconfigurable photonic crystal nanobeam cavities that can be continuously and dynamically tuned using electrostatic forces. A tuning of ~10 nm has been demonstrated with less than 6 V of external bias and negligible steady-state power consumption.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا