Do you want to publish a course? Click here

Landau levels in QCD

90   0   0.0 ( 0 )
 Added by Gergely Endrodi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and an expansion of the full four-dimensional modes in the basis of these two-dimensional states. We evaluate various fermionic observables including the quark condensate and the spin polarization in this basis to find how much the lowest Landau level contributes to them. The results allow for a deeper insight into the dynamics of quarks and gluons in background magnetic fields and may be directly compared to low-energy models of QCD employing the lowest Landau level approximation.



rate research

Read More

In lattice QCD the computation of one-particle irreducible (1PI) Greens functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Greens functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Greens function.
We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a lowest Landau level in the four-dimensional case, and discuss how much of the observed effects of a magnetic field can be explained in terms of it. Our results can be used to test the validity of low-energy models of QCD that make use of the lowest-Landau-level approximation.
We give a new perspective on the properties of quarks and gluons at finite temperature T in N_f = 2 ~ 6 QCD. We point out the existence of an IR fixed point for the gauge coupling constant at T>T_c (T_c is the chiral phase transition temperature). Based on this observation we predict theoretically and verify numerically that the correlation functions of a meson G(t) at T/T_c > 1 decay with a power-law corrected Yukawa-type decaying form, G(t)=c exp(-m t)/t^alpha in the conformal region defined by m < c Lambda_IR, where Lambda_IR is the IR cutoff, m is the characteristic scale of the spectrum in the meson cannel and c is a constant of order 1. The decaying form is the characteristics of conformal theories with an IR cutoff. We discuss in detail how the resulting hyper scaling relation of physical observables may modify the existing argument about the order of the chiral phase transition in the N_f=2 case.
116 - Adriano Di Giacomo 2015
The hypothesis is analysed that the monopoles condensing in QCD vacuum to make it a dual superconductor are classical solutions of the equations of motion.
We report on preliminary results for the triple-gluon and the quark-gluon vertex in Landau gauge. Our results are based on two-flavor and quenched lattice QCD calculations for different quark masses, lattice spacings and volumes. We discuss the momentum dependence of some of the verticess form factors and the deviations from the tree-level form.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا