Do you want to publish a course? Click here

Conformal Behavior in QCD

201   0   0.0 ( 0 )
 Added by Yoichi Iwasaki
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We give a new perspective on the properties of quarks and gluons at finite temperature T in N_f = 2 ~ 6 QCD. We point out the existence of an IR fixed point for the gauge coupling constant at T>T_c (T_c is the chiral phase transition temperature). Based on this observation we predict theoretically and verify numerically that the correlation functions of a meson G(t) at T/T_c > 1 decay with a power-law corrected Yukawa-type decaying form, G(t)=c exp(-m t)/t^alpha in the conformal region defined by m < c Lambda_IR, where Lambda_IR is the IR cutoff, m is the characteristic scale of the spectrum in the meson cannel and c is a constant of order 1. The decaying form is the characteristics of conformal theories with an IR cutoff. We discuss in detail how the resulting hyper scaling relation of physical observables may modify the existing argument about the order of the chiral phase transition in the N_f=2 case.



rate research

Read More

116 - Adriano Di Giacomo 2015
The hypothesis is analysed that the monopoles condensing in QCD vacuum to make it a dual superconductor are classical solutions of the equations of motion.
We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the lowest Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and an expansion of the full four-dimensional modes in the basis of these two-dimensional states. We evaluate various fermionic observables including the quark condensate and the spin polarization in this basis to find how much the lowest Landau level contributes to them. The results allow for a deeper insight into the dynamics of quarks and gluons in background magnetic fields and may be directly compared to low-energy models of QCD employing the lowest Landau level approximation.
We give a new perspective on the dynamics of conformal theories realized in the SU(N) gauge theory, when the number of flavors N_f is within the conformal window. Motivated by the RG argument on conformal theories with a finite IR cutoff Lambda_{IR}, we conjecture that the propagator of a meson G_H(t) on a lattice behaves at large t as a power-law corrected Yukawa-type decaying form G_H(t) = c_H exp{(-m_H t)}/t^{alpha_H} instead of the exponentially decaying form c_Hexp{(-m_H t)}, in the small quark mass region where m_H le c Lambda_{IR}: m_H is the mass of the ground state hadron in the channel H and c is a constant of order 1. The transition between the conformal region and the confining region is a first order transition. Our numerical results verify the predictions for the N_f=7 case and the N_f=16 case in the SU(3) gauge theory with the fundamental representation.
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using a new method local analysis, we conjecture that the conformal region exists together with the confining region and the deconfining region in the phase structure parametrized by beta and K, both in the cases of the large Nf QCD within the conformal window (referred as Conformal QCD) with an IR cutoff and small Nf QCD at T/Tc>1 with Tc being the chiral transition temperature (referred as High Temperature QCD). Our numerical simulation on a lattice of the size 16^3 x 64 shows the following evidence of the conjecture. In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified by non-perturbative effects and temporal propagators of meson behave at large t as a power-law corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining region or the confining region is a sharp transition between different vacua and therefore it suggests a first order transition both in Conformal QCD and in High Temperature QCD. Within our fixed lattice simulation, we find that there is a precise correspondence between Conformal QCD and High Temperature QCD in the temporal propagators under the change of the parameters Nf and T/Tc respectively. In particular, we find the correspondence between Conformal QCD with Nf = 7 and High Temperature QCD with Nf=2 at T ~ 2 Tc being in close relation to a meson unparticle model. From this we estimate the anomalous mass dimension gamma* = 1.2 (1) for Nf=7. We also show that the asymptotic state in the limit T/Tc --> infty is a free quark state in the Z(3) twisted vacuum.
We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we analyze the two-point functions theoretically and on the lattice, and determine the finite size scaling and the infinite volume fermion mass dependence of the would-be hadron masses. We show that the spectrum in the Coulomb phase of the system can be described in the context of a universal scaling analysis and we provide the nonperturbative determination of the fermion mass anomalous dimension gamma*=0.235(46) at the infrared fixed point. We comment on the agreement with the four-loop perturbative prediction for this quantity and we provide a unified description of all existing lattice results for the spectrum of this system, them being in the Coulomb phase or the asymptotically free phase. Our results corroborate the view that the fixed point we are studying is not associated to a physical singularity along the bare coupling line and estimates of physical observables can be attempted on either side of the fixed point. Finally, we observe the restoration of the U(1) axial symmetry in the two-point functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا