Do you want to publish a course? Click here

Breakdown of single spin-fluid model in heavily hole-doped superconductor CsFe2As2

450   0   0.0 ( 0 )
 Added by Tao Wu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although Fe-based superconductors are multiorbital correlated electronic systems, previous nuclei magnetic resonance (NMR) measurement suggests that a single spin-fluid model is sufficient to describe its spin behavior. Here, we firstly observed the breakdown of single spin-fluid model in a heavily hole-doped Fe-based superconductor CsFe2As2 by site-selective NMR measurement. At high temperature regime, both of Knight shift and nuclei spin-lattice relaxation at 133Cs and 75As nuclei exhibit distinct temperature-dependent behavior, suggesting the breakdown of single spin-fluid model in CsFe2As2. This is ascribed to the coexistence of both localized and itinerant spin degree of freedom at 3d orbits, which is consistent with orbital-selective Mott phase. However, single spin-fluid behavior is gradually recovered by developing a coherent state among 3d orbits with decreasing temperature. A Kondo liquid scenario is proposed for the low-temperature coherent state. The present work sets strong constraint on the theoretical model for Fe-based superconductors.



rate research

Read More

We report high-resolution neutron scattering measurements of the low energy spin fluctuations of KFe$_{2}$As$_{2}$, the end member of the hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ family with only hole pockets, above and below its superconducting transition temperature $T_c$ ($sim$ 3.5 K). Our data reveals clear spin fluctuations at the incommensurate wave vector ($0.5pmdelta$, 0, $L$), ($delta$ = 0.2)(1-Fe unit cell), which exhibit $L$-modulation peaking at $L=0.5$. Upon cooling to the superconducting state, the incommensurate spin fluctuations gradually open a spin-gap and form a sharp spin resonance mode. The incommensurability ($2delta$ = 0.4) of the resonance mode ($sim1.2$ meV) is considerably larger than the previously reported value ($2delta$ $approx0.32$) at higher energies ($gesim6$ meV). The determination of the momentum structure of spin fluctuation in the low energy limit allows a direct comparison with the realistic Fermi surface and superconducting gap structure. Our results point to an $s$-wave pairing with a reversed sign between the hole pockets near the zone center in KFe$_{2}$As$_{2}$.
93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.
119 - K. K. Huynh , Y. Tanabe , T. Urata 2014
An SDW antiferromagnetic (SDW-AF) low temperature phase transition is generally observe and the AF spin fluctuations are considered to play an important role for the superconductivity paring mechanism in FeAs superconductors. However, a similar magnetic phase transition is not observed in FeSe superconductors, which has caused considerable discussion. We report on the intrinsic electronic states of FeSe as elucidated by transport measurements under magnetic fields using a high quality single crystal. A mobility spectrum analysis, an ab initio method that does not make assumptions on the transport parameters in a multicarrier system, provides very import and clear evidence that another hidden order, most likely the symmetry broken from the tetragonal C4 symmetry to the C2 symmetry nematicity associated with the selective d-orbital splitting, exists in the case of superconducting FeSe other than the AF magnetic order spin fluctuations. The intrinsic low temperature phase in FeSe is in the almost compensated semimetallic states but is additionally accompanied by Dirac cone like ultrafast electrons $sim$ 10$^4$cm$^2$(VS)$^{-1}$ as minority carriers.
313 - Junfeng He , Xu Liu , Wenhao Zhang 2014
In high temperature cuprate superconductors, it is now generally agreed that the parent compound is a Mott insulator and superconductivity is realized by doping the antiferromagnetic Mott insulator. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. It has been proposed theoretically that the parent compound of the iron-based superconductors may be on the verge of a Mott insulator, but so far no clear experimental evidence of doping-induced Mott transition has been available. Here we report an electronic evidence of an insulator-superconductor transition observed in the single-layer FeSe films grown on the SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with the increasing doping. This observation represents the first example of an insulator-superconductor transition via doping observed in the iron-based superconductors. It indicates that the parent compound of the iron-based superconductors is in proximity of a Mott insulator and strong electron correlation should be considered in describing the iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا