Do you want to publish a course? Click here

Extended Hamiltonians and shift, ladder functions and operators

88   0   0.0 ( 0 )
 Added by Giovanni Rastelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, many natural Hamiltonian systems, classical and quantum, with constants of motion of high degree, or symmetry operators of high order, have been found and studied. Most of these Hamiltonians, in the classical case, can be included in the family of extended Hamiltonians, geometrically characterized by the structure of warped manifold of their configuration manifold. For the extended manifolds, the characteristic constants of motion of high degree are polynomial in the momenta of determined form. We consider here a different form of the constants of motion, based on the factorization procedure developed by S. Kuru, J. Negro and others. We show that an important subclass of the extended Hamiltonians admits factorized constants of motion and we determine their expression. The classical constants may be non-polynomial in the momenta, but the factorization procedure allows, in a type of extended Hamiltonians, their quantization via shift and ladder operators, for systems of any finite dimension.



rate research

Read More

149 - D. Cevik , M. Gadella , S. Kuru 2016
We analyze the one dimensional scattering produced by all variations of the Poschl-Teller potential, i.e., potential well, low and high barriers. We show that the Poschl-Teller well and low barrier potentials have no resonance poles, but an infinite number of simple poles along the imaginary axis corresponding to bound and antibound states. A quite different situation arises on the Poschl-Teller high barrier potential, which shows an infinite number of resonance poles and no other singularities. We have obtained the explicit form of their associated Gamow states. We have also constructed ladder operators connecting wave functions for bound and antibound states as well as for resonance states. Finally, using wave functions of Gamow and antibound states in the factorization method, we construct some examples of supersymmetric partners of the Poschl-Teller Hamiltonian.
226 - Paolo Aniello 2013
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigners approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup in disguise, namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The disguised counterparts of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.
Providing system-size independent lower bounds on the spectral gap of local Hamiltonian is in general a hard problem. For the case of finite-range, frustration free Hamiltonians on a spin lattice of arbitrary dimension, we show that a property of the ground state space is sufficient to obtain such a bound. We furthermore show that such a condition is necessary and equivalent to a constant spectral gap. Thanks to this equivalence, we can prove that for gapless models in any dimension, the spectral gap on regions of diameter $n$ is at most $oleft(frac{log(n)^{2+epsilon}}{n}right)$ for any positive $epsilon$.
157 - I.V. Tyutin , B.L. Voronov 2013
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized oscillator representations for all generalized Calogero Hamiltonians with potential $V(x)=g_{1}/x^2+g_{2}x^2$, $g_{1}geq-1/4$, $g_{2}>0$. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian, representation that explicitly determines the ground state and the ground-state energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist in agreement with the fact that the respective Hamiltonians are not bounded from below.
81 - Georg Junker 2019
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا