Do you want to publish a course? Click here

Divide and conquer method for proving gaps of frustration free Hamiltonians

144   0   0.0 ( 0 )
 Added by Angelo Lucia
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Providing system-size independent lower bounds on the spectral gap of local Hamiltonian is in general a hard problem. For the case of finite-range, frustration free Hamiltonians on a spin lattice of arbitrary dimension, we show that a property of the ground state space is sufficient to obtain such a bound. We furthermore show that such a condition is necessary and equivalent to a constant spectral gap. Thanks to this equivalence, we can prove that for gapless models in any dimension, the spectral gap on regions of diameter $n$ is at most $oleft(frac{log(n)^{2+epsilon}}{n}right)$ for any positive $epsilon$.



rate research

Read More

158 - I.V. Tyutin , B.L. Voronov 2013
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized oscillator representations for all generalized Calogero Hamiltonians with potential $V(x)=g_{1}/x^2+g_{2}x^2$, $g_{1}geq-1/4$, $g_{2}>0$. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian, representation that explicitly determines the ground state and the ground-state energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist in agreement with the fact that the respective Hamiltonians are not bounded from below.
In recent years, many natural Hamiltonian systems, classical and quantum, with constants of motion of high degree, or symmetry operators of high order, have been found and studied. Most of these Hamiltonians, in the classical case, can be included in the family of extended Hamiltonians, geometrically characterized by the structure of warped manifold of their configuration manifold. For the extended manifolds, the characteristic constants of motion of high degree are polynomial in the momenta of determined form. We consider here a different form of the constants of motion, based on the factorization procedure developed by S. Kuru, J. Negro and others. We show that an important subclass of the extended Hamiltonians admits factorized constants of motion and we determine their expression. The classical constants may be non-polynomial in the momenta, but the factorization procedure allows, in a type of extended Hamiltonians, their quantization via shift and ladder operators, for systems of any finite dimension.
We construct explicit bound state wave functions and bound state energies for certain $N$--body Hamiltonians in one dimension that are analogous to $N$--electron Hamiltonians for (three-dimensional) atoms and monatomic ions.
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on several combinatorial and geometric tasks: convex hull, clustering, knapsack and euclidean TSP. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.
81 - Georg Junker 2019
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا