No Arabic abstract
It is known that the Cardassian universe is successful in describing the accelerated expansion of the universe, but its dynamical equations are hard to get from the action principle. In this paper, we establish the connection between the Cardassian universe and $f(T, mathcal{T})$ gravity, where $T$ is the torsion scalar and $mathcal{T}$ is the trace of the matter energy-momentum tensor. For dust matter, we find that the modified Friedmann equations from $f(T, mathcal{T})$ gravity can correspond to those of Cardassian models, and thus, a possible origin of Cardassian universe is given. We obtain the original Cardassian model, the modified polytropic Cardassian model, and the exponential Cardassian model from the Lagrangians of $f(T,mathcal{T})$ theory. Furthermore, by adding an additional term to the corresponding Lagrangians, we give three generalized Cardassian models from $f(T,mathcal{T})$ theory. Using the observation data of type Ia supernovae, cosmic microwave background radiation, and baryon acoustic oscillations, we get the fitting results of the cosmological parameters and give constraints of model parameters for all of these models.
I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical physics.
In this paper, we study the physical meaning of the wavefunction of the universe. With the continuity equation derived from the Wheeler-DeWitt (WDW) equation in the minisuperspace model, we show that the quantity $rho(a)=|psi(a)|^2$ for the universe is inversely proportional to the Hubble parameter of the universe. Thus, $rho(a)$ represents the probability density of the universe staying in the state $a$ during its evolution, which we call the dynamical interpretation of the wavefunction of the universe. We demonstrate that the dynamical interpretation can predict the evolution laws of the universe in the classical limit as those given by the Friedmann equation. Furthermore, we show that the value of the operator ordering factor $p$ in the WDW equation can be determined to be $p=-2$.
An interesting idea is that the universe could be spontaneously created from nothing, but no rigorous proof has been given. In this paper, we present such a proof based on the analytic solutions of the Wheeler-DeWitt equation (WDWE). Explicit solutions of the WDWE for the special operator ordering factor p=-2 (or 4) show that, once a small true vacuum bubble is created by quantum fluctuations of the metastable false vacuum, it can expand exponentially no matter whether the bubble is closed, flat or open. The exponential expansion will end when the bubble becomes large and thus the early universe appears. With the de Broglie-Bohm quantum trajectory theory, we show explicitly that it is the quantum potential that plays the role of the cosmological constant and provides the power for the exponential expansion of the true vacuum bubble. So it is clear that the birth of the early universe completely depends on the quantum nature of the theory.
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higss inflation.
We consider a cosmology in which the final stage of the Universe is neither accelerating nor decelerating, but approaches an asymptotic state where the scale factor becomes a constant value. In order to achieve this, we first bring in a scale factor with the desired property and then determine the details of the energy contents as a result of the cosmological evolution equations. We show that such a scenario can be realized if we introduce a generalized quintom model which consists of a scalar field and a phantom with a {it negative} cosmological constant term. The standard cold dark matter with $w_m=0$ is also introduced. This is possible basically due to the balance between the matter and the {it negative} cosmological constant which tend to attract and scalar field and phantom which repel in the asymptotic region. The stability analysis shows that this asymptotic solution is classically stable.