Do you want to publish a course? Click here

The Holographic Universe

74   0   0.0 ( 0 )
 Added by Jean-Pierre Luminet
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical physics.



rate research

Read More

In present article we consider an axion F(R) gravity model and described with the help of holographic principle the cosmological models of viscous dark fluid coupled with axion matter in a spatially flat Friedmann-Robertson-Walker (FRW) universe. This description based on generalized infrared-cutoff holographic dark energy, proposed by Nojiri and Odintsov. We explored the Little Rip, the Pseudo Rip, and the power-law bounce cosmological models in terms of the parameters of the inhomogeneous equation of the state of viscous dark fluid and calculated the infrared cutoffs analytically. We represented the energy conservation equation for the dark fluid from a holographic point of view and showed a correspondence between the cosmology of a viscous fluid and holographic cosmology. We analyzed the autonomous dynamic system. In the absence of interaction between fluids, solutions are obtained corresponding to two cases. In the first case, dark energy is missing and the extension describes the component of dark matter. The second case corresponds to cosmological models with an extension due to dark energy. The solutions obtained are investigated for stability. For a cosmological model with the interaction of a special type, the stability of solutions of the dynamic system is also investigated.
108 - F. Canfora , G. Vilasi 2005
A scenario is proposed in which the matter-antimatter asymmetry behaves like a seed for the inflationary phase of the universe. The mechanism which makes this scenario plausible is the holographic principle: this scheme is supported by a good prediction of the number of e-folds. It seems that such a mechanism can only work in the presence of a Hagedorn-like phase transition. The issue of the graceful exit can also be naturally accounted for.
We formulate Barrow holographic dark energy, by applying the usual holographic principle at a cosmological framework, but using the Barrow entropy instead of the standard Bekenstein-Hawking one. The former is an extended black-hole entropy that arises due to quantum-gravitational effects which deform the black-hole surface by giving it an intricate, fractal form. We extract a simple differential equation for the evolution of the dark energy density parameter, which possesses standard holographic dark energy as a limiting sub-case, and we show that the scenario can describe the universe thermal history, with the sequence of matter and dark energy eras. Additionally, the new Barrow exponent $Delta$ significantly affects the dark energy equation of state, and according to its value it can lead it to lie in the quintessence regime, in the phantom regime, or experience the phantom-divide crossing during the evolution.
It is known that the Cardassian universe is successful in describing the accelerated expansion of the universe, but its dynamical equations are hard to get from the action principle. In this paper, we establish the connection between the Cardassian universe and $f(T, mathcal{T})$ gravity, where $T$ is the torsion scalar and $mathcal{T}$ is the trace of the matter energy-momentum tensor. For dust matter, we find that the modified Friedmann equations from $f(T, mathcal{T})$ gravity can correspond to those of Cardassian models, and thus, a possible origin of Cardassian universe is given. We obtain the original Cardassian model, the modified polytropic Cardassian model, and the exponential Cardassian model from the Lagrangians of $f(T,mathcal{T})$ theory. Furthermore, by adding an additional term to the corresponding Lagrangians, we give three generalized Cardassian models from $f(T,mathcal{T})$ theory. Using the observation data of type Ia supernovae, cosmic microwave background radiation, and baryon acoustic oscillations, we get the fitting results of the cosmological parameters and give constraints of model parameters for all of these models.
We consider a cosmology in which the final stage of the Universe is neither accelerating nor decelerating, but approaches an asymptotic state where the scale factor becomes a constant value. In order to achieve this, we first bring in a scale factor with the desired property and then determine the details of the energy contents as a result of the cosmological evolution equations. We show that such a scenario can be realized if we introduce a generalized quintom model which consists of a scalar field and a phantom with a {it negative} cosmological constant term. The standard cold dark matter with $w_m=0$ is also introduced. This is possible basically due to the balance between the matter and the {it negative} cosmological constant which tend to attract and scalar field and phantom which repel in the asymptotic region. The stability analysis shows that this asymptotic solution is classically stable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا