Do you want to publish a course? Click here

Analog Beam Tracking in Linear Antenna Arrays: Convergence, Optimality, and Performance

115   0   0.0 ( 0 )
 Added by Jiahui Li
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The directionality of millimeter-wave (mmWave) communications creates a significant challenge in serving fast-moving mobile terminals on, e.g., high-speed vehicles, trains, and UAVs. This challenge is exacerbated in mmWave systems using analog antenna arrays, because of the inherent non-convexity in the control of the phase shifters. In this paper, we develop a recursive beam tracking algorithm which can simultaneously achieve fast tracking speed, high tracking accuracy, low complexity, and low pilot overhead. In static scenarios, this algorithm converges to the minimum Cramer-Rao lower bound (CRLB) of beam tracking with high probability. In dynamic scenarios, even at SNRs as low as 0dB, our algorithm is capable of tracking a mobile moving randomly at an absolute angular velocity of 10-20 degrees per second, using only 5 pilot symbols per second. If combining with a simple TDMA pilot pattern, this algorithm can track hundreds of high-speed mobiles in 5G configurations. Our simulations show that the tracking performance of this algorithm is much better than several state-of-the-art algorithms.



rate research

Read More

60 - Jiahui Li , Yin Sun , Limin Xiao 2017
The directionality of millimeter-wave (mmWave) communications introduces a significant challenge in serving fast-rotating/moving terminals, e.g., mobile AR/VR, high-speed vehicles, trains, UAVs.This challenge is exacerbated in mmWave systems using analog beamforming, because of the inherent non-convexity in the analog beam tracking problem. In this paper, we obtain the Cramer-Rao lower bound (CRLB) of beam tracking and optimize the analog beamforming vectors to get the minimum CRLB. Then, we develop a low complexity analog beam tracking algorithm that simultaneously optimizes the analog beamforming vector and the estimate of beam direction. Finally, by establishing a new basic theory, we provide the theoretical convergence analysis of the proposed analog beam tracking algorithm, which proves that the minimum CRLB of the MSE is achievable with high probability. Our simulations show that this algorithm can achieve faster tracking speed, higher tracking accuracy and higher data rate than several state-of-the-art algorithms. The key analytical tools used in our algorithm design are stochastic approximation and recursive estimation with a control parameter.
Applications towards 6G have brought a huge interest towards arrays with a high number of antennas and operating within the millimeter and sub-THz bandwidths for joint communication and localization. With such large arrays, the plane wave approximation is often not accurate because the system may operate in the near-field propagation region (Fresnel region) where the electromagnetic field wavefront is spherical. In this case, the curvature of arrival (CoA) is a measure of the spherical wavefront that can be used to infer the source position using only a single large array. In this paper, we study a near-field tracking problem for inferring the state (i.e., the position and velocity) of a moving source with an ad-hoc observation model that accounts for the phase profile of a large receiving array. For this tracking problem, we derive the posterior Cramer-Rao Lower Bound (P-CRLB) and show the effects when the source moves inside and outside the Fresnel region. We provide insights on how the loss of positioning information outside Fresnel comes from an increase of the ranging error rather than from inaccuracies of angular estimation. Then, we investigate the performance of different Bayesian tracking algorithms in the presence of model mismatches and abrupt trajectory changes. Our results demonstrate the feasibility and high accuracy for most of the tracking approaches without the need of wideband signals and of any synchronization scheme. signals and of any synchronization scheme.
To improve national security, government agencies have long been committed to enforcing powerful surveillance measures on suspicious individuals or communications. In this paper, we consider a wireless legitimate surveillance system, where a full-duplex multi-antenna legitimate monitor aims to eavesdrop on a dubious communication link between a suspicious pair via proactive jamming. Assuming that the legitimate monitor can successfully overhear the suspicious information only when its achievable data rate is no smaller than that of the suspicious receiver, the key objective is to maximize the eavesdropping non-outage probability by joint design of the jamming power, receive and transmit beamformers at the legitimate monitor. Depending on the number of receive/transmit antennas implemented, i.e., single-input single-output, single-input multiple-output, multiple-input single-output and multiple-input multiple-output (MIMO), four different scenarios are investigated. For each scenario, the optimal jamming power is derived in closed-form and efficient algorithms are obtained for the optimal transmit/receive beamforming vectors. Moreover, low-complexity suboptimal beamforming schemes are proposed for the MIMO case. Our analytical findings demonstrate that by exploiting multiple antennas at the legitimate monitor, the eavesdropping non-outage probability can be significantly improved compared to the single antenna case. In addition, the proposed suboptimal transmit zero-forcing scheme yields similar performance as the optimal scheme.
The emerging millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with lens antenna arrays, which is also known as beamspace MIMO, can effectively reduce the required number of power-hungry radio frequency (RF) chains. Therefore, it has been considered as a promising technique for the upcoming 5G communications and beyond. However, most current studies on beamspace MIMO have not taken into account the important power leakage problem in beamspace channels, which possibly leads to a significant degradation in the signal-to-noise ratio (SNR) and the system sum-rate. To this end, we propose a beam aligning precoding method to handle the power leakage problem in this paper. Firstly, a phase shifter network (PSN) structure is proposed, which enables each RF chain in beamspace MIMO to select multiple beams to collect the leakage power. Then, a rotation-based precoding algorithm is designed based on the proposed PSN structure, which aligns the channel gains of the selected beams towards the same direction for maximizing the received SNR at each user. Furthermore, we reveal some system design insights by analyzing the sum-rate and energy efficiency (EE) of the proposed beam aligning precoding method. In simulations, the proposed approach is found to achieve the near-optimal sum-rate performance compared with the ideal case of no power leakage, and obtains a higher EE than the existing schemes with either a linear or planar array.
In this paper, we study the uplink channel throughput performance of a proposed novel multiple-antenna hybrid-domain non-orthogonal multiple access (MA-HD-NOMA) scheme. This scheme combines the conventional sparse code multiple access (SCMA) and power-domain NOMA (PD-NOMA) schemes in order to increase the number of users served as compared to conventional NOMA schemes and uses multiple antennas at the base station. To this end, a joint resource allocation problem for the MA-HD-NOMA scheme is formulated that maximizes the sum rate of the entire system. For a comprehensive comparison, the joint resource allocation problems for the multi-antenna SCMA (MA-SCMA) and multi-antenna PD-NOMA (MA-PD-NOMA) schemes with the same overloading factor are formulated as well. Each of the formulated problems is a mixed-integer non-convex program, and hence, we apply successive convex approximation (SCA)- and reweighted $ell_1$ minimization-based approaches to obtain rapidly converging solutions. Numerical results reveal that the proposed MA-HD-NOMA scheme has superior performance compared to MA-SCMA and MA-PD-NOMA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا