Do you want to publish a course? Click here

Hydrostatic Chandra X-ray analysis of SPT-selected galaxy clusters - I. Evolution of profiles and core properties

90   0   0.0 ( 0 )
 Added by Jeremy Sanders
 Publication date 2017
  fields Physics
and research's language is English
 Authors J. S. Sanders




Ask ChatGPT about the research

We analyse Chandra X-ray Observatory observations of a set of galaxy clusters selected by the South Pole Telescope using a new publicly-available forward-modelling projection code, MBProj2, assuming hydrostatic equilibrium. By fitting a powerlaw plus constant entropy model we find no evidence for a central entropy floor in the lowest-entropy systems. A model of the underlying central entropy distribution shows a narrow peak close to zero entropy which accounts for 60 per cent of the systems, and a second broader peak around 130 keV cm^2. We look for evolution over the 0.28 to 1.2 redshift range of the sample in density, pressure, entropy and cooling time at 0.015 R_500 and at 10 kpc radius. By modelling the evolution of the central quantities with a simple model, we find no evidence for a non-zero slope with redshift. In addition, a non-parametric sliding median shows no significant change. The fraction of cool-core clusters with central cooling times below 2 Gyr is consistent above and below z=0.6 (~30-40 per cent). Both by comparing the median thermodynamic profiles, centrally biased towards cool cores, in two redshift bins, and by modelling the evolution of the unbiased average profile as a function of redshift, we find no significant evolution beyond self-similar scaling in any of our examined quantities. Our average modelled radial density, entropy and cooling-time profiles appear as powerlaws with breaks around 0.2 R_500. The dispersion in these quantities rises inwards of this radius to around 0.4 dex, although some of this scatter can be fit by a bimodal model.

rate research

Read More

We present a multi-wavelength analysis of the four most relaxed clusters in the South Pole Telescope 2500 deg^2 survey, which lie at 0.55 < z < 0.75. This study, which utilizes new, deep data from Chandra and Hubble, along with ground-based spectroscopy from Gemini and Magellan, improves significantly on previous studies in both depth and angular resolution, allowing us to directly compare to clusters at z~0. We find that the temperature, density, and entropy profiles of the intracluster medium (ICM) are very similar among the four clusters, and share similar shapes to clusters at z~0. Specifically, we find no evidence for deviations from self similarity in the temperature profile over the radial range 10kpc < r < 1Mpc, implying that the processes responsible for preventing runaway cooling over the past >6 Gyr are, at least roughly, preserving self similarity. We find typical metallicities of ~0.3 Zsun in the bulk of the ICM, rising to ~0.5 Zsun in the inner ~100 kpc, and reaching ~1 Zsun at r < 10kpc. This central excess is similar in magnitude to what is observed in the most relaxed clusters at z~0, suggesting that both the global metallicity and the central excess that we see in cool core clusters at z~0 were in place very early in the cluster lifetime and, specifically, that the central excess is not due to late-time enrichment by the central galaxy. Consistent with observations at z~0, we measure a diversity of stellar populations in the central brightest cluster galaxies of these four clusters, with star formation rates spanning a factor of ~500, despite the similarity in cooling time, cooling rate, and central entropy. These data suggest that, while the details vary dramatically from system to system, runaway cooling has been broadly regulated in relaxed clusters over the past 6 Gyr.
We present measurements of the X-ray observables of the intra-cluster medium (ICM), including luminosity $L_X$, ICM mass $M_{ICM}$, emission-weighted mean temperature $T_X$, and integrated pressure $Y_X$, that are derived from XMM-Newton X-ray observations of a Sunyaev-Zeldovich Effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range of $0.20 < z < 1.5$. We constrain the best-fit power law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable to mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters ($M_{500}geq 3 times10^{14}$ $M_odot$) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with $geq 2.5{sigma}$ significance in the case of $L_X$ and $M_{ICM}$. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for $L_X$. There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, however the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and SZ signal out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). Using profiles of the gas temperature, density and pressure that have been spatially resolved out to (median value) 0.9 $R_{500}$, 1.8 $R_{500}$, and 2.3 $R_{500}$, respectively, we are able to recover the hydrostatic gravitating mass profile with several methods and using different mass models. The hydrostatic masses are recovered with a relative (statistical) median error of 3% at $R_{500}$ and 6% at $R_{200}$. By using several different methods to solve the equation of the hydrostatic equilibrium, we evaluate some of the systematic uncertainties to be of the order of 5% at both $R_{500}$ and $R_{200}$. A Navarro-Frenk-White profile provides the best-fit in nine cases out of 13, with the remaining four cases that do not show a statistically significant tension with it. The distribution of the mass concentration follows the correlations with the total mass predicted from numerical simulations with a scatter of 0.18 dex, with an intrinsic scatter on the hydrostatic masses of 0.15 dex. We compare them with the estimates of the total gravitational mass obtained through X-ray scaling relations applied to $Y_X$, gas fraction and $Y_{SZ}$, and from weak lensing and galaxy dynamics techniques, and measure a substantial agreement with the results from scaling laws, from WL at both $R_{500}$ and $R_{200}$ (with differences below 15%), from cluster velocity dispersions, but a significant tension with the caustic masses that tend to underestimate the hydrostatic masses by 40% at $R_{200}$. We also compare these measurements with predictions from alternative models to the Cold Dark Matter, like the Emergent Gravity and MOND scenarios.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic technique. The hydrostatic and caustic masses agree to better than $approx20%$ on average across the radial range covered by both techniques $(sim[0.2-1.25]R_{500})$. The mass profiles were measured independently and do not assume a common functional form. Previous studies suggest that, at $R_{500}$, the hydrostatic and caustic masses are biased low and high respectively. We find that the ratio of hydrostatic to caustic mass at $R_{500}$ is $1.20^{+0.13}_{-0.11}$; thus it is larger than 0.9 at $approx3sigma$ and the combination of under- and over-estimation of the mass by these two techniques is $approx10%$ at most. There is no indication of any dependence of the mass ratio on the X-ray morphology of the clusters, indicating that the hydrostatic masses are not strongly systematically affected by the dynamical state of the clusters. Overall, our results favour a small value of the so-called hydrostatic bias due to non-thermal pressure sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا