No Arabic abstract
We analyze the classical problem of the stochastic dynamics of a particle confined in a periodic potential, through the so called Ilin and Khasminskii model, with a novel semi-analytical approach. Our approach gives access to the transient and the asymptotic dynamics in all damping regimes, which are difficult to investigate in the usual Brownian model. We show that the crossover from the overdamped to the underdamped regime is associated with the loss of a typical time scale and of a typical length scale, as signaled by the divergence of the probability distribution of a certain dynamical event. In the underdamped regime, normal diffusion coexists with a non Gaussian displacement probability distribution for a long transient, as recently observed in a variety of different systems. We rationalize the microscopic physical processes leading to the non-Gaussian behavior, as well as the timescale to recover the Gaussian statistics. The theoretical results are supported by numerical calculations and are compared to those obtained for the Brownian model.
We investigate the persistence probability of a Brownian particle in a harmonic potential, which decays to zero at long times -- leading to an unbounded motion of the Brownian particle. We consider two functional forms for the decay of the confinement, an exponential and an algebraic decay. Analytical calculations and numerical simulations show, that for the case of the exponential relaxation, the dynamics of Brownian particle at short and long times are independent of the parameters of the relaxation. On the contrary, for the algebraic decay of the confinement, the dynamics at long times is determined by the exponent of the decay. Finally, using the two-time correlation function for the position of the Brownian particle, we construct the persistence probability for the Brownian walker in such a scenario.
In this paper, we investigate the ground-state properties of a bosonic Tonks-Girardeau gas confined in a one-dimensional periodic potential. The single-particle reduced density matrix is computed numerically for systems up to $N=265$ bosons. Scaling analysis of the occupation number of the lowest orbital shows that there are no Bose-Einstein Condensation(BEC) for the periodically trapped TG gas in both commensurate and incommensurate cases. We find that, in the commensurate case, the scaling exponents of the occupation number of the lowest orbital, the amplitude of the lowest orbital and the zero-momentum peak height with the particle numbers are 0, -0.5 and 1, respectively, while in the incommensurate case, they are 0.5, -0.5 and 1.5, respectively. These exponents are related to each other in a universal relation.
We consider a particle in a one-dimensional box of length $L$ with a Maxwell bath at one end and a reflecting wall at the other end. Using a renewal approach, as well as directly solving the master equation, we show that the system exhibits a slow power law relaxation with a logarithmic correction towards the final equilibrium state. We extend the renewal approach to a class of confining potentials of the form $U(x) propto x^alpha$, $x>0$, where we find that the relaxation is $sim t^{-(alpha+2)/(alpha-2)}$ for $alpha >2$, with a logarithmic correction when $(alpha+2)/(alpha-2)$ is an integer. For $alpha <2$ the relaxation is exponential. Interestingly for $alpha=2$ (harmonic potential) the localised bath can not equilibrate the particle.
We study a generalisation of the Hatano-Nelson Hamiltonian in which a periodic modulation of the site energies is present in addition to the usual random distribution. The system can then become localized by disorder or develop a band gap, and the eigenspectrum shows a wide variety of topologies. We determine the phase diagram, and perform a finite size scaling analysis of the localization transition.
We investigate the motion of a single particle moving on a two-dimensional square lattice whose sites are occupied by right and left rotators. These left and right rotators deterministically rotate the particles velocity to the right or left, respectively and emph{flip} orientation from right to left or from left to right after scattering the particle. We study three types of configurations of left and right rotators, which we think of as types of media, through with the particle moves. These are completely random (CR), random periodic (RP), and completely periodic (CP) configurations. For CR configurations the particles dynamics depends on the ratio $r$ of right to left scatterers in the following way. For small $rsimeq0$, when the configuration is nearly homogeneous, the particle subdiffuses with an exponent of 2/3, similar to the diffusion of a macromolecule in a crowded environment. Also, the particles trajectory has a fractal dimension of $d_fsimeq4/3$, comparable to that of a self-avoiding walk. As the ratio increases to $rsimeq 1$, the particles dynamics transitions from subdiffusion to anomalous diffusion with a fractal dimension of $d_fsimeq 7/4$, similar to that of a percolating cluster in 2-d. In RP configurations, which are more structured than CR configurations but also randomly generated, we find that the particle has the same statistic as in the CR case. In contrast, CP configurations, which are highly structured, typically will cause the particle to go through a transient stage of subdiffusion, which then abruptly changes to propagation. Interestingly, the subdiffusive stage has an exponent of approximately 2/3 and a fractal dimension of $d_fsimeq4/3$, similar to the case of CR and RP configurations for small $r$.