Do you want to publish a course? Click here

Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield

115   0   0.0 ( 0 )
 Added by Marco Capelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nitrogen-vacancy (NV) centre in diamond is a unique optical defect that is used in many applications today and methods to enhance its fluorescence brightness are highly sought after. We observed experimentally an enhancement of the NV quantum yield by up to 7% in bulk diamond caused by an external magnetic field relative to the field-free case. This observation is rationalised phenomenologically in terms of a magnetic field dependence of the NV excited state triplet-to-singlet transition rate. The theoretical model is in good qualitative agreement with the experimental results at low excitation intensities. Our results significantly contribute to our fundamental understanding of the photophysical properties of the NV defect in diamond and may enable novel NV centre-based magnetometry techniques.



rate research

Read More

The negatively charged nitrogen-vacancy (NV) center spin in diamond can be used to realize quantum computation and to sense magnetic fields. Its spin triplet consists of three levels labeled with its spin z-components of +1, 0, and -1. Without external field, the +1 and -1 states are degenerate and higher than the 0 state due to the zero-field splitting. By taking the symmetrical and anti-symmetrical superpositions of the +1 and -1 states as our qubit basis, we obtain exact evolution operator of the NV center spin under time-dependent magnetic field by mapping the three-level system on time-dependent quantum two-level systems with exact analytical solutions. With our exact evolution operator of the NV center spin including three levels, we show that arbitrary qubits can be prepared from the starting 0 state and arbitrary rapid quantum logic gates of these qubits can be realized with magnetic fields. In addition, it is made clear that the typical quantum logic gates can be accomplished within a few nanoseconds and the fidelity can be very high because only magnetic field strength needs to be controlled in this approach. These results should be useful to realizing quantum computing with the NV center spin systems in diamond and exploring other effects and applications.
The dependence of the luminescence of diamonds with negatively charged nitrogen-vacancy centers (NV-) vs. applied magnetic field (magnetic spectrum) was studied. A narrow line in zero magnetic field was discovered. The properties of this line are considerably different from those of other narrow magnetic spectrum lines. Its magnitude is weakly dependent of the orientation of the single-crystal sample to the external magnetic field. This line is also observed in a powdered sample. The shape of the line changes greatly when excitation light polarization is varied. The magnitude of the line has a non-linear relation to excitation light intensity. For low intensities this dependence is close to a square law. To explain the mechanism giving rise to this line in the magnetic spectrum, we suggest a model based on the dipole-dipole interaction between different NV- centers.
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.
Nuclear magnetic resonance (NMR) imaging with nanometer resolution requires new detection techniques with sensitivity well beyond the capability of conventional inductive detection. Here, we demonstrate two dimensional imaging of $^1$H NMR from an organic test sample using a single nitrogen-vacancy center in diamond as the sensor. The NV center detects the oscillating magnetic field from precessing protons in the sample as the sample is scanned past the NV center. A spatial resolution of 12 nm is shown, limited primarily by the scan accuracy. With further development, NV-detected magnetic resonance imaging could lead to a new tool for three-dimensional imaging of complex nanostructures, including biomolecules.
We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a spin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا