We demonstrate an enhancement in the vortex generation when artificial gauge potential is introduced to condensates confined in a double well potential. This is due to the lower energy required to create a vortex in the low condensate density region within the barrier. Furthermore, we study the transport of vortices between the two wells, and show that the traverse time for vortices is longer for the lower height of the well. We also show that the critical value of synthetic magnetic field to inject vortices into the bulk of the condensate is lower in the double-well potential compared to the harmonic confining potential.
Engineering of synthetic magnetic flux in Bose-Einstein condensates [Lin et al., Nature {bf 462}, 628 (2009)] has prospects for attaining the high vortex densities necessary to emulate the fractional quantum Hall effect. We analytically establish the hydrodynamical behaviour of a condensate in a uniform synthetic magnetic field, including its density and velocity profile. Importantly, we find that the onset of vortex nucleation observed experimentally corresponds to a dynamical instability in the hydrodynamical solutions and reveal other routes to instability and anticipated vortex nucleation.
We study collective modes of vortex lattices in two-component Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. By means of the Bogoliubov theory with the lowest-Landau-level approximation, we numerically calculate the excitation spectra for a rich variety of vortex lattices that appear commonly for parallel and antiparallel synthetic fields. We find that in all of these cases, there appear two distinct modes with linear and quadratic dispersion relations at low energies, which exhibit anisotropy reflecting the symmetry of each lattice structure. Remarkably, the low-energy spectra for the two types of fields are found to be related to each other by simple rescaling when vortices in different components overlap owing to an intercomponent attraction. These results are consistent with an effective field theory analysis. However, the rescaling relations break down for interlaced vortex lattices appearing with an intercomponent repulsion, indicating a nontrivial effect of an intercomponent vortex displacement beyond the effective field theory. We also find that high-energy parts of the excitation bands exhibit line or point nodes as a consequence of a fractional translation symmetry present in some of the lattice structures.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich variety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent TE-TM splitting of the optical modes, the excitations dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the inter- and intra-spin polariton interaction constants and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.