No Arabic abstract
We study collective modes of vortex lattices in two-component Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. By means of the Bogoliubov theory with the lowest-Landau-level approximation, we numerically calculate the excitation spectra for a rich variety of vortex lattices that appear commonly for parallel and antiparallel synthetic fields. We find that in all of these cases, there appear two distinct modes with linear and quadratic dispersion relations at low energies, which exhibit anisotropy reflecting the symmetry of each lattice structure. Remarkably, the low-energy spectra for the two types of fields are found to be related to each other by simple rescaling when vortices in different components overlap owing to an intercomponent attraction. These results are consistent with an effective field theory analysis. However, the rescaling relations break down for interlaced vortex lattices appearing with an intercomponent repulsion, indicating a nontrivial effect of an intercomponent vortex displacement beyond the effective field theory. We also find that high-energy parts of the excitation bands exhibit line or point nodes as a consequence of a fractional translation symmetry present in some of the lattice structures.
We study binary Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. Within the mean-field theory, the two types of fields have been shown to give the same vortex-lattice phase diagram. We develop an improved effective field theory to study properties of collective modes and ground-state intercomponent entanglement. Here, we point out the importance of introducing renormalized coupling constants for coarse-grained densities. We show that the low-energy excitation spectra for the two types of fields are related to each other by suitable rescaling using the renormalized constants. By calculating the entanglement entropy, we find that for an intercomponent repulsion (attraction), the two components are more strongly entangled in the case of parallel (antiparallel) fields, in qualitative agreement with recent studies for a quantum (spin) Hall regime. We also find that the entanglement spectrum exhibits an anomalous square-root dispersion relation, which leads to a subleading logarithmic term in the entanglement entropy. All of these are confirmed by numerical calculations based on the Bogoliubov theory with the lowest-Landau-level approximation. Finally, we investigate the effects of quantum fluctuations on the phase diagrams by calculating the correction to the ground-state energy due to zero-point fluctuations in the Bogoliubov theory. We find that the boundaries between rhombic-, square-, and rectangular-lattice phases shift appreciably with a decrease in the filling factor.
Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our system using the mean-field Gross--Pitaevskii theory, the full range of many particle effects among the vortices can be studied. In particular we find the existence of localized vacancies that are quasi-stable over long periods of time, and characterize the effects on the background lattice through use of the orientational correlation function, and Delaunay triangulation.
The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The totally symmetric subset of these modes includes the transverse shear, common longitudinal, and differential longitudinal modes. We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair of breathing modes. Combining both the BdG and TDGP approaches allows one to unambiguously identify every observed mode.
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferometric technique we developed, and as such, fully characterise the magnetic solitons while they undergo oscillatory motion in the trap. Magnetic solitons exhibit non-dispersive, dissipationless long-time dynamics. By imprinting multiple magnetic solitons in our ultracold gas sample, we engineer binary collisions between solitons of either same or opposite magnetisation and map out their trajectories.