No Arabic abstract
Charge modulations are considered as a leading competitor of high-temperature superconductivity in the underdoped cuprates, and their relationship to Fermi surface reconstructions and to the pseudogap state is an important subject of current research. Overdoped cuprates, on the other hand, are widely regarded as conventional Fermi liquids without collective electronic order. For the overdoped (Bi,Pb)2.12Sr1.88CuO6+{delta} (Bi2201) high-temperature superconductor, here we report resonant x-ray scattering measurements revealing incommensurate charge order reflections, with correlation lengths of 40-60 lattice units, that persist up to at least 250K. Charge order is markedly more robust in the overdoped than underdoped regime but the incommensurate wave vectors follow a common trend; moreover it coexists with a single, unreconstructed Fermi surface, without pseudogap or nesting features, as determined from angle-resolved photoemission spectroscopy. This re-entrant charge order is reproduced by model calculations that consider a strong van Hove singularity within a Fermi liquid framework.
Electronic charge order is a symmetry breaking state in high-$T_mathrm{c}$ cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)$_2$Sr$_2$CuO$_{6+x}$ sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of $pm 1$. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-$T_mathrm{c}$ cuprate superconductors and other charge density wave materials.
In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($pi, pi$) to the electron-like, centered at the $Gamma$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+delta}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario.
The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb)$_2$Sr$_2$CuO$_{6+delta}$ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.
Interlayer van der Waals (vdW) coupling is generic in two-dimensional materials such as graphene and transition metal dichalcogenides, which can induce very low-energy phonon modes. Using high-resolution inelastic hard x-ray scattering, we uncover th
Five transport coefficients of the cuprate superconductor Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration $x = 0.2$ ($T_{rm c}=18$K) and $x = 0.0$ ($T_{rm c}=10$K). The samples have dopings $p$ very close to the critical doping $p^{star}$ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number $n_{rm H}$ decreases with reduced $p$, consistent with a drop in carrier density from $n = 1+p$ above $p^{star}$ to $n=p$ below $p^{star}$. This drop in $n_{rm H}$ is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at $T = 0$ is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.