The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, especially underdoped samples, its behavior in other cuprates and different doping regions is still unclear. Here we apply a scanning tunneling microscope to explore an overdoped (Bi, Pb)$_2$Sr$_2$CuO$_{6+delta}$ with a large Fermi surface (FS). The establishment of a nematic order and its real-space distribution is visualized as the energy scale approaches the PG.
Electronic charge order is a symmetry breaking state in high-$T_mathrm{c}$ cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)$_2$Sr$_2$CuO$_{6+x}$ sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of $pm 1$. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-$T_mathrm{c}$ cuprate superconductors and other charge density wave materials.
In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($pi, pi$) to the electron-like, centered at the $Gamma$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+delta}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario.
Interlayer van der Waals (vdW) coupling is generic in two-dimensional materials such as graphene and transition metal dichalcogenides, which can induce very low-energy phonon modes. Using high-resolution inelastic hard x-ray scattering, we uncover th
e ultra-low energy phonon mode along the Cu-O bond direction in the high-$T_c$ cuprate (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+delta}$ (Bi2201). This mode is independent of temperature, while its intensity decreases with doping in accordance with an increasing c-axis lattice parameter. We compare the experimental results to first-principles density functional theory simulations and identify the observed mode as a van der Waals phonon, which arises from the shear motion of the adjacent Bi-O layers. This shows that Bi-based cuprate has similar vibrational properties as graphene and transition metal dichalcogenides, which can be exploited to engineer novel heterostructures.
We present a Greens function based framework for modeling the scanning tunneling spectrum from the normal as well as the superconducting state of complex materials where the nature of the tunneling process$-$ i.e. the effect of the tunneling matrix element, is properly taken into account. The formalism is applied to the case of optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) high-Tc superconductor using a large tight-binding basis set of electron and hole orbitals. The results show clearly that the spectrum is modified strongly by the effects of the tunneling matrix element and that it is not a simple replica of the local density of states (LDOS) of the Cu-$d_{x^2-y^2}$ orbitals with other orbitals playing a key role in shaping the spectra. We show how the spectrum can be decomposed usefully in terms of tunneling channels or paths through which the current flows from various orbitals in the system to the scanning tip. Such an analysis reveals symmetry forbidden and symmetry enhanced paths between the tip and the cuprate layers. Significant contributions arise from not only the CuO$_2$ layer closest to the tip, but also from the second CuO$_2$ layer. The spectrum also contains a longer range background reflecting the non-local nature of the underlying Bloch states. In the superconducting state, coherence peaks are found to be dominated by the anomalous components of Greens function.
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and magnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
Yuan Zheng
,Ying Fei
,Kunliang Bu
.
(2018)
.
"The study of electronic nematicity in an overdoped (Bi, Pb)$_2$Sr$_2$CuO$_{6+delta}$ superconductor using scanning tunneling spectroscopy"
.
Kunliang Bu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا