No Arabic abstract
China has encountered serious land loss problems along with urban expansion due to rapid urbanization. Without considering complicated spatiotemporal heterogeneity, previous studies could not extract urban transition rules at large scale well. This study proposed a random forest algorithm (RFA) based cellular automata (CA) model to simulate Chinas urban expansion and farmland loss in a fine scale from 2000 to 2030. The objectives of this study are to 1) mine urban conversion rules in different homogeneous economic development regions, and 2) simulate Chinas urban expansion process and farmland loss at high spatial resolution (30 meters). Firstly, we clustered several homogeneous economic development regions among China according to official statistical data. Secondly, we constructed a RFA-based CA model to mine complex urban conversion rules and carried out simulation of urban expansion and farmland loss at each homo-region. The proposed model was implemented on Tianhe-1 supercomputer located in Guangzhou, China. The accuracy evaluation demonstrates that the simulation result of proposed RFA-based CA model is more in agreement with actual land use change. This study proves that the primary factor of farmland loss in China is rapid urbanization from 2000, and the farmland loss rate is expected to slow down gradually and will stabilize from 2010 to 2030. It shows that China is able to preserve the 1.20 million km farmland without crossing the red line within the next 20 years, but the situation remains severe.
The emergence of complex behaviors in cellular automata is an area that has been widely developed in recent years with the intention to generate and analyze automata that produce space-moving patterns or gliders that interact in a periodic background. Frequently, this type of automata has been found through either an exhaustive search or a meticulous construction of the evolution rule. In this study, the specification of cellular automata with complex behaviors was obtained by utilizing randomly generated specimens. In particular, it proposed that a cellular automaton of $n$ states should be specified at random and then extended to another automaton with a higher number of states so that the original automaton operates as a periodic background where the additional states serve to define the gliders. Moreover, this study presented an explanation of this method. Furthermore, the random way of defining complex cellular automata was studied by using mean-field approximations for various states and local entropy measures. This specification was refined with a genetic algorithm to obtain specimens with a higher degree of complexity. With this methodology, it was possible to generate complex automata with hundreds of states, demonstrating that randomly defined local interactions with multiple states can construct complexity.
Vector-based cellular automata (CA) based on real land-parcel has become an important trend in current urban development simulation studies. Compared with raster-based and parcel-based CA models, vector CA models are difficult to be widely used because of their complex data structures and technical difficulties. The UrbanVCA, a brand-new vector CA-based urban development simulation framework was proposed in this study, which supports multiple machine-learning models. To measure the simulation accuracy better, this study also first proposes a vector-based landscape index (VecLI) model based on the real land-parcels. Using Shunde, Guangdong as the study area, the UrbanVCA simulates multiple types of urban land-use changes at the land-parcel level have achieved a high accuracy (FoM=0.243) and the landscape index similarity reaches 87.3%. The simulation results in 2030 show that the eco-protection scenario can promote urban agglomeration and reduce ecological aggression and loss of arable land by at least 60%. Besides, we have developed and released UrbanVCA software for urban planners and researchers.
Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) systems. Past CA model research has focused on improving the technical modeling procedures, and only a few studies have sought to improve our understanding of the nonlinear relationships that underlie LULC change. Many CA models lack the ability to simulate the detailed patch evolution of multiple land use types. This study introduces a patch-generating land use simulation (PLUS) model that integrates a land expansion analysis strategy and a CA model based on multi-type random patch seeds. These were used to understand the drivers of land expansion and to investigate the landscape dynamics in Wuhan, China. The proposed model achieved a higher simulation accuracy and more similar landscape pattern metrics to the true landscape than other CA models tested. The land expansion analysis strategy also uncovered some underlying transition rules, such as that grassland is most likely to be found where it is not strongly impacted by human activities, and that deciduous forest areas tend to grow adjacent to arterial roads. We also projected the structure of land use under different optimizing scenarios for 2035 by combining the proposed model with multi-objective programming. The results indicate that the proposed model can help policymakers to manage future land use dynamics and so to realize more sustainable land use patterns for future development. Software for PLUS has been made available at https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.