Do you want to publish a course? Click here

Construction of Hamiltonians by supervised learning of energy and entanglement spectra

76   0   0.0 ( 0 )
 Added by Hiroyuki Fujita
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter physics, nuclear physics, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely effective Hamiltonian, is essential. Here, we propose a simple scheme of constructing Hamiltonians from given energy or entanglement spectra with machine learning. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin-1/2 model with several analytic results based on the high order perturbation theory which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the $S=1/2$ two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane phase and the Rung Singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is non-local by nature, and the locality can be restored by introducing the anisotropy and turning the system into the large-$D$ phase. Possible applications to the study of strongly-correlated systems and the model construction from experimental data are discussed.



rate research

Read More

Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counting of their edge modes when the ground-state is cut in two spatially distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one to one map between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement spectrum, whose counting of eigenvalues for each good quantum number is identical (up to accidental degeneracies) to the counting of bulk quasiholes, and the orbital entanglement spectrum (the Li-Haldane spectrum). As the particle entanglement spectrum is related to bulk quasihole physics and the orbital entanglement spectrum is related to edge physics, our map can be thought of as a mathematically sound microscopic description of bulk-edge correspondence in entanglement spectra. By using a set of clustering operators which have their origin in conformal field theory (CFT) operator expansions, we show that the counting of the orbital entanglement spectrum eigenvalues in the thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Moreover, we show this to be true even for CFT states which are likely bulk gapless, such as the Gaffnian wavefunction.
In this work, we consider a model of a subsystem interacting with a reservoir and study dynamics of entanglement assuming that the overall time-evolution is governed by non-integrable Hamiltonians. We also compare to an ensemble of Integrable Hamiltonians. To do this, we make use of unitary invariant ensembles of random matrices with either Wigner-Dyson or Poissonian distributions of energy. Using the theory of Weingarten functions, we derive universal average time evolution of the reduced density matrix and the purity and compare these results with several physical Hamiltonians: randomiz
Motivated by the existence of exact many-body quantum scars in the AKLT chain, we explore the connection between Matrix Product State (MPS) wavefunctions and many-body quantum scarred Hamiltonians. We provide a method to systematically search for and construct parent Hamiltonians with towers of exact eigenstates composed of quasiparticles on top of an MPS wavefunction. These exact eigenstates have low entanglement in spite of being in the middle of the spectrum, thus violating the strong Eigenstate Thermalization Hypothesis (ETH). Using our approach, we recover the AKLT chain starting from the MPS of its ground state, and we derive the most general nearest-neighbor Hamiltonian that shares the AKLT quasiparticle tower of exact eigenstates. We further apply this formalism to other simple MPS wavefunctions, and derive new families of Hamiltonians that exhibit AKLT-like quantum scars. As a consequence, we also construct a scar-preserving deformation that connects the AKLT chain to the integrable spin-1 pure biquadratic model. Finally, we also derive other families of Hamiltonians that exhibit new types of exact quantum scars, including a $U(1)$-invariant perturbed Potts model.
We study the entanglement spectrum (ES) and entropy between two coupled Tomonaga-Luttinger liquids (TLLs) on parallel periodic chains. This problem gives access to the entanglement properties of various interesting systems, such as spin ladders as well as two-dimensional topological phases. By expanding interchain interactions to quadratic order in bosonic fields, we are able to calculate the ES for both gapped and gapless systems using only methods for free theories. In certain gapless phases of coupled non-chiral TLLs, we interestingly find an ES with a dispersion relation proportional to the square root of the subsystem momentum, which we relate to a long-range interaction in the entanglement Hamiltonian. We numerically demonstrate the emergence of this unusual dispersion in a model of hard-core bosons on a ladder. In gapped phases of coupled non-chiral TLLs, which are relevant to spin ladders and topological insulators, we show that the ES consists of linearly dispersing modes, which resembles the spectrum of a single-chain TLL but is characterized by a modified TLL parameter. Based on a calculation for coupled chiral TLLs, we are also able to provide a very simple proof for the correspondence between the ES and the edge-state spectrum in quantum Hall systems consistent with previous numerical and analytical studies.
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy changes with small deformations of the entangling surface. This leads to the notion of entanglement susceptibilities. These relate the variation of the EE to the geometric variation of the subregion. We determine the form of the leading entanglement susceptibilities for a large class of scale invariant states, such as groundstates of conformal field theories, and systems with Lifshitz scaling, which includes fixed points governed by disorder. We then use the susceptibilities to derive the universal contributions that arise due to non-smooth features in the entangling surface: corners in 2d, as well as cones and trihedral vertices in 3d. We finally discuss the generalization to Renyi entropies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا