Do you want to publish a course? Click here

Large scale solitonic back-reaction effects in pre-inflation

122   0   0.0 ( 0 )
 Added by Mauricio Bellini
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Relativistic Quantum Geometry (RQG), we study the emergence of back-reaction modes with solitonic properties, on astrophysical and cosmological scales, in a model of pre-inflation where the universe emerge from a topological phase transition. We found that, modes of the geometrical field that describes back-reaction effects related to larger scales (cosmological scales), are more coherent than those related to astrophysical scales, so that they can be considered a coarse-grained soliton.



rate research

Read More

We study the behavior of large-scale (cosmological) modes of back-reaction effects during inflation. We find that the group of modes which describes the very large-scale fluctuations of energy density during inflation due to back-reaction effects evolve in phase between them, but there is a tear of these modes with respect to the other modes that describe astrophysical scales. This effect could be the origin for the large-scale homogeneity and isotropy of the universe and could be a manifestation of the existence of dark energy, which is responsible for the accelerated expansion of the universe.
We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT approximated by a radiation fluid. We find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system and how back reaction effects alter the space-time structure. We also provide an interpretation of the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional description is given by the Karch-Randall model, in which a sequence of five-dimensional floating black holes followed by a sequence of brane localized black holes correspond to the above solutions.
Hawking radiation remains a crucial theoretical prediction of semi-classical gravity and is considered one of the critical tests for a model of quantum gravity. However, Hawkings original derivation used quantum field theory on a fixed background. Efforts have been made to include the spacetime fluctuations arising from the quantization of the dynamical degrees of freedom of gravity itself and study the effects on the Hawking particles. Using semi-classical analysis, we study the effects of quantum fluctuations of scalar field stress-tensors in asymptotic non-flat spherically symmetric black-hole space-times. Using two different approaches, we obtain a critical length-scale from the horizon at which gravitational interactions become large, i.e., when the back reaction to the metric due to the scalar field becomes significant. For 4-D Schwarzschild AdS (SAdS) and Schwarzschild de Sitter (SdS), the number of relevant modes for the back-reaction is finite only for a specific range of values of M/L (where M is the mass of the black-hole, and L is related to the modulus of the cosmological constant). For SAdS (SdS), the number of relevant modes is infinite for M/L $sim$ 1 (0.2 < M/L < $frac{1}{3sqrt{3}}$). We discuss the implications of these results for the late stages of black-hole evaporation.
77 - S. P. Miao 2017
We use dimensional regularization in pure quantum gravity on de Sitter background to evaluate the one loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one loop order. This renormalization completely absorbs the one loop correction, which accords with the prediction that the lowest secular back-reaction should be a 2-loop effect.
When quantum back-reaction by fluctuations, correlations and higher moments of a state becomes strong, semiclassical quantum mechanics resembles a dynamical system with a high-dimensional phase space. Here, systematic computational methods to derive the dynamical equations including all quantum corrections to high order in the moments are introduced, together with a (deparameterized) quantum cosmological example to illustrate some implications. The results show, for instance, that the Gaussian form of an initial state is maintained only briefly, but that the evolving state settles down to a new characteristic shape afterwards. Remarkably, even in the regime of large high-order moments, we observe a strong convergence within all considered orders that supports the use of this effective approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا