Do you want to publish a course? Click here

Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions

291   0   0.0 ( 0 )
 Added by Sergey Korotin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atmospheric parameters and chemical compositions for ten stars with metallicities in the region of -2.2< [Fe/H] <-0.6 were precisely determined using high resolution, high signal to noise, spectra. For each star the abundances, for 14 to 27 elements, were derived using both LTE and NLTE approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors etween 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core collapse supernovae (CCSN) are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.



rate research

Read More

Chemistry and kinematic studies can determine the origins of stellar population across the Milky Way. The metallicity distribution function of the bulge indicates that it comprises multiple populations, the more metal-poor end of which is particularly poorly understood. It is currently unknown if metal-poor bulge stars ([Fe/H] $<$ -1 dex) are part of the stellar halo in the inner most region, or a distinct bulge population or a combination of these. Cosmological simulations also indicate that the metal-poor bulge stars may be the oldest stars in the Galaxy. In this study, we successfully target metal-poor bulge stars selected using SkyMapper photometry. We determine the stellar parameters of 26 stars and their elemental abundances for 22 elements using R$sim$ 47,000 VLT/UVES spectra and contrast their elemental properties with that of other Galactic stellar populations. We find that the elemental abundances we derive for our metal-poor bulge stars have much lower overall scatter than typically found in the halo. This indicates that these stars may be a distinct population confined to the bulge. If these stars are, alternatively, part of the inner-most distribution of the halo, this indicates that the halo is more chemically homogeneous at small Galactic radii than at large radii. We also find two stars whose chemistry is consistent with second-generation globular cluster stars. This paper is the first part of the Chemical Origins of Metal-poor Bulge Stars (COMBS) survey that will chemo-dynamically characterize the metal-poor bulge population.
Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are incorporated into gas and stars are necessary to piece together how the elements evolved. These include establishing chemical abundance trends, as set by metal-poor stars, comparing nucleosynthesis yield predictions with stellar abundance data, and theoretical modeling of chemical evolution. To aid these studies, we have collected chemical abundance measurements and other information such as stellar parameters, coordinates, magnitudes, and radial velocities, for extremely metal-poor stars from the literature. The database, JINAbase, contains 1658 unique stars, 60% of which have [Fe/H]<2.5. This information is stored in an SQL database, together with a user-friendly queryable web application (http://jinabase.pythonanywhere.com). Objects with unique chemical element signatures (e.g., r-process stars, s-process and CEMP stars) are labeled or can be classified as such. The web application enables fast selection of customized comparison samples from the literature for the aforementioned studies and many more. Using the multiple entries for three of the most well studied metal-poor stars, we evaluate systematic uncertainties of chemical abundances measurements. We provide a brief guide on the selection of chemical elements for model comparisons for non- spectroscopists who wish to learn about metal-poor stars and the details of chemical abundances measurements.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
The inner Galactic Bulge has, until recently, been avoided in chemical evolution studies due to extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as APOGEE, allow for the first time the measurement of metallicities in the inner region of our Galaxy. We study metallicities of 33 K/M giants situated in the Galactic Center region from observations obtained with the APOGEE survey. We selected K/M giants with reliable stellar parameters from the APOGEE/ASPCAP pipeline. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the inner Galactic Bulge. We find a metal-rich population centered at [M/H] = +0.4 dex, in agreement with earlier studies of other bulge regions, but also a peak at low metallicity around $rm [M/H] = -1.0,dex$, suggesting the presence of a metal-poor population which has not previously been detected in the central region. Our results indicate a dominant metal-rich population with a metal-poor component that is enhanced in the $alpha$-elements. This metal-poor population may be associated with the classical bulge and a fast formation scenario.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the three stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا