No Arabic abstract
Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. In the first part of this study, we report the effect of interaction of the tellurite glass melt with the embedded nanodiamond on the loss of the glasses. The glass fabrication conditions such as melting temperature and concentration of NDs added to the melt were found to have critical influence on the interaction. Based on this understanding, we identified promising fabrication conditions for decreasing the loss to levels required for practical applications.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. The first part of this study reported the origin of loss in nanodiamond-doped glass and impact of glass fabrication conditions. Here, we report the fabrication of nanodiamond-doped tellurite fibers with significantly reduced loss in the visible through further understanding of the impact of glass fabrication conditions on the interaction of the glass melt with the embedded nanodiamond. We fabricated tellurite fibers containing nanodiamond in concentrations up to 0.7 ppm-weight, while reducing the loss by more than an order of magnitude down to 10 dB/m at 600-800 nm.
Next generation wound care technology capable of diagnosing wound parameters, promoting healthy cell growth and reducing pathogenic infections noninvasively will provide patients with an improved standard of care and an accelerated wound repair. Temperature is one of the indicating biomarkers specific to chronic wounds. This work reports a hybrid, multifunctional optical platform: nanodiamond-silk membranes as bioinspired dressings capable of temperature sensing and wound healing. The hybrid was fabricated through electrospinning and formed sub-micron fibrous membranes with high porosity. The silk fibres are capable of compensating for the lack of extracellular matrix at the wound site, supporting the wound healing. The negatively charged nitrogen vacancy (NV-) color centres in nanodiamonds (NDs) exhibit optically detected magnetic resonance (ODMR) properties and act as fluorescent nanoscale thermometers, capable of sensing temperature variations associated to the presence of infection or inflammation in a wound, without physically removing the dressing. Our results show that the presence of NDs in the hybrid ND-silk membranes improve the thermal stability of silk fibres. The NV- color centres in NDs embedded in silk fibres exhibit well-retained fluorescent and ODMR. Using the NV- centres as fluorescent nanoscale thermometers, we achieved temperature sensing at a range of temperatures, including the biologically relevant temperature window, on cell-cultured ND-silk membranes. Enhancement in the temperature sensitivity of the NV- centres was observed for the hybrids. The membranes were further tested in vivo in a murine wound healing model and demonstrated biocompatibility and equivalent wound closure rates as the control wounds. Additionally, the hybrid ND-silk membranes showed selective antifouling and biocidal propensity toward Gram-negative Pseudomonas aeruginosa and Escherichia coli.
Background: Nanoscale composition of silk defining its unique properties via a hierarchical structural anisotropy has to be analysed at the highest spatial resolution of tens-of-nanometers corresponding to the size of fibrils made of b-sheets, which are the crystalline building blocks of silk. Results: Nanoscale optical and structural properties of silk have been measured from 100-nm thick longitudinal slices of silk fibers with ~10 nm resolution, the highest so far. Optical sub-wavelength resolution in hyperspectral mapping of absorbance and molecular orientation were carried out for comparison at IR wavelengths 2-10 micrometers using synchrotron radiation. Conclusion: Reliable distinction of transmission changes by only 1-2% due to anisotropy of amide bands was obtained from nano-thin slices of silk.
Micron-scale randomness during manufacturing can ensure anti-counterfeiting labels are unclonable. However, this security typically comes at the expense of complex hardware being needed for authentication (e.g., microscopy systems). We demonstrate unclonable labels that can be authenticated using a standard light-emitting diode and smartphone camera. The labels consist of a microlens array laminated to a polymer film that is doped with luminescent microparticles. The micron-scale random overlap of focal volumes and microparticles leads to a pattern of bright points of visible light emission that can be easily imaged by a smartphone camera. 10 000 comparisons of images demonstrate that the labels can be robustly authenticated, and that the probability of a false authentication is on the order of $10^{-15}$. The ability for microlens arrays to simplify the hardware needed for authentication of unclonable labels is generalizable, and attractive for the implementation of unclonable labels in anti-counterfeiting systems.