Do you want to publish a course? Click here

Double cyclic variations in orbital period of the eclipsing cataclysmic variable EX Dra

174   0   0.0 ( 0 )
 Added by Zhongtao Han
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

EX Dra is a long-period eclipsing dwarf nova with $sim2-3$ mag amplitude outbursts. This star has been monitored photometrically from November, 2009 to March, 2016 and 29 new mid-eclipse times were obtained. By using new data together with the published data, the best fit to the $O-C$ curve indicate that the orbital period of EX Dra have an upward parabolic change while undergoing double-cyclic variations with the periods of 21.4 and 3.99 years, respectively. The upward parabolic change reveals a long-term increase at a rate of $dot{P}={+7.46}times10^{-11}{s} {s^{-1}}$. The evolutionary theory of cataclysmic variables (CVs) predicts that, as a CV evolves, the orbital period should be decreasing rather than increasing. Secular increase can be explained as the mass transfer between the secondary and primary or may be just an observed part of a longer cyclic change. Most plausible explanation for the double-cyclic variations is a pair of light travel-time effect via the presence of two companions. Their masses are determined to be $M_{A}sini_{A}=29.3(pm0.6) M_{Jup}$ and $M_{B}sini_{B}=50.8(pm0.2) M_{Jup}$. When the two companions are coplanar to the orbital plane of the central eclipsing pair, their masses would match to brown dwarfs.



rate research

Read More

We present the photometric results of the eclipsing cataclysmic variable (CV) WZ Sge near the period minimum ($P_{min}$). Eight new mid-eclipse times were determined and the orbital ephemeris was updated. Our result shows that the orbital period of WZ Sge is decreasing at a rate of $dot{P}=-2.72(pm0.23)times{10^{-13}},s s^{-1}$. This secular decrease, coupled with previous detection of its donor, suggest that WZ Sge is a pre-bounce system. Further analysis indicates that the observed period decrease rate is about $1.53$ times higher than pure gravitational radiation (GR) driving. We constructed the evolutionary track of WZ Sge, which predicts that $P_{min}$ of WZ Sge is $sim77.98 (pm0.90)$ min. If the orbital period decreases at the current rate, WZ Sge will evolve past its $P_{min}$ after $sim25.3$ Myr. Based on the period evolution equation we find $dot{M}_{2}simeq4.04(pm0.10)times10^{-11}M_{odot}yr^{-1}$, which is compatible with the current concept of CV evolution at ultrashort orbital periods.
We report the discovery of a new eclipsing polar, CRTS J035010.7+323230 (hereafter CRTS J0350+3232). We identified this cataclysmic variable (CV) candidate as a possible polar from its multi-year Catalina Real-Time Transient Survey (CRTS) optical light curve. Photometric monitoring of 22 eclipses in 2015 and 2017 was performed with the 2.1-m Otto Struve Telescope at McDonald Observatory. We derive an unambiguous high-precision ephemeris. Strong evidence that CRTS J0350+3232 is a polar comes from optical spectroscopy obtained over a complete orbital cycle using the Apache Point Observatory 3.5-m telescope. High velocity Balmer and He II $lambda$4686{AA} emission line equivalent width ratios, structures, and variations are typical of polars and are modulated at the same period, 2.37-hrs (142.3-min), as the eclipse to within uncertainties. The spectral energy distribution and luminosity is found to be comparable to that of AM Herculis. Pre-eclipse dips in the light curve show evidence for stream accretion. We derive the following tentative binary and stellar parameters assuming a helium composition white dwarf and a companion mass of 0.2 M$_{odot}$: inclination i = 74.68$^{o}$ ${pm}$ 0.03$^{o}$, semi-major axis a = 0.942 ${pm}$ 0.024 R$_{odot}$, and masses and radii of the white dwarf and companion respectively: M$_{1}$ = 0.948 $^{+0.006}_{-0.012}$ M$_{odot}$, R$_{1}$ = 0.00830 $^{+0.00012}_{-0.00006}$ R$_{odot}$, R$_{2}$ = 0.249 ${pm}$ 0.002 R$_{odot}$. As a relatively bright (V $sim$ 17-19 mag), eclipsing, period-gap polar, CRTS J0350+3232 will remain an important laboratory for the study of accretion and angular momentum evolution in polars.
We study the newly discovered variable star GSC 4560--02157. CCD photometry was performed in 2013--2014, and a spectrum was obtained with the 6-m telescope in June, 2014. GSC 4560--02157 is demonstrated to be a short-period (P=0.265359d) eclipsing variable star. All its flat-bottom primary minima are approximately at the same brightness level, while the stars out-of-eclipse brightness and brightness at secondary minimum varies considerably (by up to 0.6m) from cycle to cycle. Besides, there are short-term (time scale of 0.03-0.04 days) small-amplitude brightness variations out of eclipse. This behavior suggests cataclysmic nature of the star, confirmed with a spectrum taken on June 5, 2014. The spectrum shows numerous emissions of the hydrogen Balmer series, HeI, HeII.
DV UMa is an eclipsing dwarf nova with an orbital period of $sim2.06$ h, which lies just at the bottom edge of the period gap. To detect its orbital period changes we present 12 new mid-eclipse times by using our CCD photometric data and archival data. Combining with the published mid-eclipse times in quiescence, spanning $sim30$ yr, the latest version of the $O-C$ diagram was obtained and analyzed. The best fit to those available eclipse timings shows that the orbital period of DV UMa is undergoing a cyclic oscillation with a period of $17.58(pm0.52)$ yr and an amplitude of $71.1(pm6.7)$ s. The periodic variation most likely arises from the light-travel-time effect via the presence of a circumbinary object because the required energy to drive the Applegate mechanism is too high in this system. The mass of the unseen companion was derived as $M_{3}sin{i}=0.025(pm0.004)M_{odot}$. If the third body is in the orbital plane (i.e. $i=i=82.9^{circ}$) of the eclipsing pair, it would match to a brown dwarf. This hypothetical brown dwarf is orbiting its host star at a separation of $sim8.6$ AU in an eccentric orbit ($e=0.44$).
GSC 4560-02157 is a new eclipsing cataclysmic variable with an orbital period of $0.265359$ days. By using the published $V-$ and $R-$band data together with our observations, we discovered that the $O-C$ curve of GSC 4560-02157 may shows a cyclic variation with the period of $3.51$ years and an amplitude of $1.40$ min. If this variation is caused by a light travel-time effect via the existence of a third body, its mass can be derived as $M_{3}siniapprox91.08M_{Jup}$, it should be a low-mass star. In addition, several physical parameters were measured. The colour of the secondary star was determined as $V-R=0.77(pm0.03)$ which corresponds to a spectral type of K2-3. The secondary stars mass was estimated as $M_{2}=0.73(pm0.02)M_{odot}$ by combing the derived $V-R$ value around phase 0 with the assumption that it obeys the mass-luminosity relation of the main sequence stars. This mass is consistent with the mass$-$period relation of CV donor stars. For the white dwarf, the eclipse durations and contacts of the white dwarf yield an upper limit of the white dwarfs radius corresponding to a lower limit mass of $M_{1}approx0.501M_{odot}$. The overestimated radius and previously published spectral data indicate that the boundary layer may has a very high temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا