Do you want to publish a course? Click here

Physical parameters and orbital period variation of a newly discovered cataclysmic variable GSC 4560-02157

103   0   0.0 ( 0 )
 Added by Zhongtao Han
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

GSC 4560-02157 is a new eclipsing cataclysmic variable with an orbital period of $0.265359$ days. By using the published $V-$ and $R-$band data together with our observations, we discovered that the $O-C$ curve of GSC 4560-02157 may shows a cyclic variation with the period of $3.51$ years and an amplitude of $1.40$ min. If this variation is caused by a light travel-time effect via the existence of a third body, its mass can be derived as $M_{3}siniapprox91.08M_{Jup}$, it should be a low-mass star. In addition, several physical parameters were measured. The colour of the secondary star was determined as $V-R=0.77(pm0.03)$ which corresponds to a spectral type of K2-3. The secondary stars mass was estimated as $M_{2}=0.73(pm0.02)M_{odot}$ by combing the derived $V-R$ value around phase 0 with the assumption that it obeys the mass-luminosity relation of the main sequence stars. This mass is consistent with the mass$-$period relation of CV donor stars. For the white dwarf, the eclipse durations and contacts of the white dwarf yield an upper limit of the white dwarfs radius corresponding to a lower limit mass of $M_{1}approx0.501M_{odot}$. The overestimated radius and previously published spectral data indicate that the boundary layer may has a very high temperature.



rate research

Read More

We study the newly discovered variable star GSC 4560--02157. CCD photometry was performed in 2013--2014, and a spectrum was obtained with the 6-m telescope in June, 2014. GSC 4560--02157 is demonstrated to be a short-period (P=0.265359d) eclipsing variable star. All its flat-bottom primary minima are approximately at the same brightness level, while the stars out-of-eclipse brightness and brightness at secondary minimum varies considerably (by up to 0.6m) from cycle to cycle. Besides, there are short-term (time scale of 0.03-0.04 days) small-amplitude brightness variations out of eclipse. This behavior suggests cataclysmic nature of the star, confirmed with a spectrum taken on June 5, 2014. The spectrum shows numerous emissions of the hydrogen Balmer series, HeI, HeII.
Using photometric ULTRACAM observations of three new short period cataclysmic variables, we model the primary eclipse lightcurves to extract the orbital separation, masses, and radii of their component stars. We find donor masses of 0.060 +/- 0.008 solar masses, 0.042 +/- 0.001 solar masses, and 0.042 +/- 0.004 solar masses, two being very low-mass sub-stellar donors, and one within 2 sigma of the hydrogen burning limit. All three of the new systems lie close to the modified, optimal model evolutionary sequence of Knigge et al. (2011). We briefly re-evaluate the long-standing discrepancy between observed donor mass and radius data, and theoretical CV evolutionary tracks. By looking at the difference in the observed period at each mass and the period predicted by the Knigge et al. (2011) evolutionary sequence, we qualitatively examine the form of excess angular momentum loss that is missing from the models below the period gap. We show indications that the excess angular momentum loss missing from CV models grows in importance relative to gravitational losses as the period decreases. Detailed CV evolutionary models are necessary to draw more quantitative conclusions in the future.
69 - T. Ak , A. Retter , A. Liu 2004
We present the results obtained from unfiltered photometric CCD observations of the newly discovered cataclysmic variable SDSS J040714.78-064425.1 made during 7 nights in November 2003. We establish the dwarf nova nature of the object as it was in outburst during our observations. We also confirm the presence of deep eclipses with a period of 0.17017d+/-0.00003 in the optical light curve of the star. In addition, we found periods of 0.166d+/-0.001 and possibly also 5.3d+/-0.7 in the data. The 0.17017d periodicity is consistent within the errors with the proposed orbital period of 0.165d (Szkody et. al. 2003) and 0.1700d (Monard 2004). Using the known relation between the orbital and superhump periods, we interpret the 0.166d and 5.3d periods as the negative superhump and the nodal precession period respectively. SDSS J040714.78-064425.1 is then classified as a negative superhump system with one of the largest orbital periods.
EX Dra is a long-period eclipsing dwarf nova with $sim2-3$ mag amplitude outbursts. This star has been monitored photometrically from November, 2009 to March, 2016 and 29 new mid-eclipse times were obtained. By using new data together with the published data, the best fit to the $O-C$ curve indicate that the orbital period of EX Dra have an upward parabolic change while undergoing double-cyclic variations with the periods of 21.4 and 3.99 years, respectively. The upward parabolic change reveals a long-term increase at a rate of $dot{P}={+7.46}times10^{-11}{s} {s^{-1}}$. The evolutionary theory of cataclysmic variables (CVs) predicts that, as a CV evolves, the orbital period should be decreasing rather than increasing. Secular increase can be explained as the mass transfer between the secondary and primary or may be just an observed part of a longer cyclic change. Most plausible explanation for the double-cyclic variations is a pair of light travel-time effect via the presence of two companions. Their masses are determined to be $M_{A}sini_{A}=29.3(pm0.6) M_{Jup}$ and $M_{B}sini_{B}=50.8(pm0.2) M_{Jup}$. When the two companions are coplanar to the orbital plane of the central eclipsing pair, their masses would match to brown dwarfs.
98 - M. A. Burlak 2018
We aim to determine the absolute parameters of the components of a poorly studied Algol-type eclipsing binary V2247 Cyg. The data analysis is based on our numerous precise UBVRcIc photometric observations and low resolution spectra. The photometric solution reveals a semi-detached configuration with a less-massive component filling its Roche lobe. The mass ratio, inclination, effective temperatures, and fractional radii were determined. Masses and radii of the components were obtained by a non-direct method. The Eclipse Time Variation (ETV) diagram revealed the period changes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا