Do you want to publish a course? Click here

Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

113   0   0.0 ( 0 )
 Added by Marzieh Najafi
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-$m$ fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method.

rate research

Read More

We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperation, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.
Cognitive radio (CR) is a key enabler realizing future networks to achieve higher spectral efficiency by allowing spectrum sharing between different wireless networks. It is important to explore whether spectrum access opportunities are available, but conventional CR based on transmitter (TX) sensing cannot be used to this end because the paired receiver (RX) may experience different levels of interference, according to the extent of their separation, blockages, and beam directions. To address this problem, this paper proposes a novel form of medium access control (MAC) termed sense-and-predict (SaP), whereby each secondary TX predicts the interference level at the RX based on the sensed interference at the TX; this can be quantified in terms of a spatial interference correlation between the two locations. Using stochastic geometry, the spatial interference correlation can be expressed in the form of a conditional coverage probability, such that the signal-to-interference ratio (SIR) at the RX is no less than a predetermined threshold given the sensed interference at the TX, defined as an opportunistic probability (OP). The secondary TX randomly accesses the spectrum depending on OP. We optimize the SaP framework to maximize the area spectral efficiencies (ASEs) of secondary networks while guaranteeing the service quality of the primary networks. Testbed experiments using USRP and MATLAB simulations show that SaP affords higher ASEs compared with CR without prediction.
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.
Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.
This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation time of the latest received information update. PNC reduces communication latency of TWRNs by turning superimposed electromagnetic waves into network-coded messages so that end users can send update packets to each other via the relay more frequently. Although sending update packets more frequently is potential to reduce AoI, how to deal with packet corruption has not been well investigated. Specifically, if old packets are corrupted in any hop of a TWRN, one needs to decide the old packets to be dropped or to be retransmitted, e.g., new packets have recent information, but may require more time to be delivered. We study the average AoI with and without ARQ in PNC-enabled TWRNs. We first consider a non-ARQ scheme where old packets are always dropped when corrupted, referred to once-lost-then-drop (OLTD), and a classical ARQ scheme with no packet lost, referred to as reliable packet transmission (RPT). Interestingly, our analysis shows that neither the non-ARQ scheme nor the pure ARQ scheme achieves good average AoI. We then put forth an uplink-lost-then-drop (ULTD) protocol that combines packet drop and ARQ. Experiments on software-defined radio indicate that ULTD significantly outperforms OLTD and RPT in terms of average AoI. Although this paper focuses on TWRNs, we believe the insight of ULTD applies generally to other two-hop networks. Our insight is that to achieve high information freshness, when packets are corrupted in the first hop, new packets should be generated and sent (i.e., old packets are discarded); when packets are corrupted in the second hop, old packets should be retransmitted until successful reception.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا