Do you want to publish a course? Click here

de Almeida-Thouless instability in short-range Ising spin-glasses

130   0   0.0 ( 0 )
 Added by Rajiv Singh
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use high temperature series expansions to study the $pm J$ Ising spin-glass in a magnetic field in $d$-dimensional hypercubic lattices for $d=5, 6, 7$ and $8$, and in the infinite-range Sherrington-Kirkpatrick (SK) model. The expansions are obtained in the variable $w=tanh^2{J/T}$ for arbitrary values of $u=tanh^2{h/T}$ complete to order $w^{10}$. We find that the scaling dimension $Delta$ associated with the ordering-field $h^2$ equals $2$ in the SK model and for $dge 6$. However, in agreement with the work of Fisher and Sompolinsky, there is a violation of scaling in a finite field, leading to an anomalous $h$-$T$ dependence of the Almeida-Thouless (AT) line in high dimensions, while scaling is restored as $d to 6$. Within the convergence of our series analysis, we present evidence supporting an AT line in $dge 6$. In $d=5$, the exponents $gamma$ and $Delta$ are substantially larger than mean-field values, but we do not see clear evidence for the AT line in $d=5$.



rate research

Read More

We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large system sizes. We find that an Almeida-Thouless line only occurs in the mean field regime, which corresponds, for a short-range spin glass, to dimension d larger than 6.
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying the power sigma is analogous to varying the space dimension d in a short-range model. For sigma=0.6, which is in the mean field regime regime, we find clear evidence for an AT line. For sigma = 0.85, which is in the non-mean-field regime and corresponds to a space dimension of close to 3, we find no AT line, though we cannot rule one out for very small fields. Finally for sigma=0.75, which is in the non-mean-field regime but closer to the mean-field boundary, the evidence suggests that there is an AT line, though the possibility that even larger sizes are needed to see the asymptotic behavior can not be ruled out.
73 - M.A. Moore , N. Read 2018
The de Almeida-Thouless (AT) line in Ising spin glasses is the phase boundary in the temperature $T$ and magnetic field $h$ plane below which replica symmetry is broken. Using perturbative renormalization group (RG) methods, we show that when the dimension $d$ of space is just above $6$ there is a multicritical point (MCP) on the AT line, which separates a low-field regime, in which the critical exponents have mean-field values, from a high-field regime where the RG flows run away to infinite coupling strength; as $d$ approaches $6$ from above, the location of the MCP approaches the zero-field critical point exponentially in $1/(d-6)$. Thus on the AT line perturbation theory for the critical properties breaks down at sufficiently large magnetic field even above $6$ dimensions, as well as for all non-zero fields when $dleq 6$ as was known previously. We calculate the exponents at the MCP to first order in $varepsilon=d-6>0$. The fate of the MCP as $d$ increases from just above 6 to infinity is not known.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations starting at a high temperature. The normally problematic critical slowing-down is not hampering this kind of approach, since the system equilibrates quickly at the initial temperature and the slowing-down is merely reflected in the dynamic scaling of the non-equilibrium order parameter with $v$ and the system size. The equilibrium limit does not have to be reached. For the dynamic exponent we obtain $z = 5.85(9)$ for bimodal couplings distribution and $z=6.00(10)$ for the Gaussian case, thus supporting universal dynamic scaling (in contrast to recent claims of non-universal behavior).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا