No Arabic abstract
We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large system sizes. We find that an Almeida-Thouless line only occurs in the mean field regime, which corresponds, for a short-range spin glass, to dimension d larger than 6.
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying the power sigma is analogous to varying the space dimension d in a short-range model. For sigma=0.6, which is in the mean field regime regime, we find clear evidence for an AT line. For sigma = 0.85, which is in the non-mean-field regime and corresponds to a space dimension of close to 3, we find no AT line, though we cannot rule one out for very small fields. Finally for sigma=0.75, which is in the non-mean-field regime but closer to the mean-field boundary, the evidence suggests that there is an AT line, though the possibility that even larger sizes are needed to see the asymptotic behavior can not be ruled out.
We use high temperature series expansions to study the $pm J$ Ising spin-glass in a magnetic field in $d$-dimensional hypercubic lattices for $d=5, 6, 7$ and $8$, and in the infinite-range Sherrington-Kirkpatrick (SK) model. The expansions are obtained in the variable $w=tanh^2{J/T}$ for arbitrary values of $u=tanh^2{h/T}$ complete to order $w^{10}$. We find that the scaling dimension $Delta$ associated with the ordering-field $h^2$ equals $2$ in the SK model and for $dge 6$. However, in agreement with the work of Fisher and Sompolinsky, there is a violation of scaling in a finite field, leading to an anomalous $h$-$T$ dependence of the Almeida-Thouless (AT) line in high dimensions, while scaling is restored as $d to 6$. Within the convergence of our series analysis, we present evidence supporting an AT line in $dge 6$. In $d=5$, the exponents $gamma$ and $Delta$ are substantially larger than mean-field values, but we do not see clear evidence for the AT line in $d=5$.
The de Almeida-Thouless (AT) line in Ising spin glasses is the phase boundary in the temperature $T$ and magnetic field $h$ plane below which replica symmetry is broken. Using perturbative renormalization group (RG) methods, we show that when the dimension $d$ of space is just above $6$ there is a multicritical point (MCP) on the AT line, which separates a low-field regime, in which the critical exponents have mean-field values, from a high-field regime where the RG flows run away to infinite coupling strength; as $d$ approaches $6$ from above, the location of the MCP approaches the zero-field critical point exponentially in $1/(d-6)$. Thus on the AT line perturbation theory for the critical properties breaks down at sufficiently large magnetic field even above $6$ dimensions, as well as for all non-zero fields when $dleq 6$ as was known previously. We calculate the exponents at the MCP to first order in $varepsilon=d-6>0$. The fate of the MCP as $d$ increases from just above 6 to infinity is not known.
One-dimensional quasi-periodic systems with power-law hopping, $1/r^a$, differ from both the standard Aubry-Azbel-Harper (AAH) model and from power-law systems with uncorrelated disorder. Whereas in the AAH model all single-particle states undergo a transition from ergodic to localized at a critical quasi-disorder strength, short-range power-law hops with $a>1$ can result in mobility edges. Interestingly, there is no localization for long-range hops with $aleq 1$, in contrast to the case of uncorrelated disorder. Systems with long-range hops are rather characterized by ergodic-to-multifractal edges and a phase transition from ergodic to multifractal (extended but non ergodic) states. We show that both mobility and ergodic-to-multifractal edges may be clearly revealed in experiments on expansion dynamics.
By tempered Monte Carlo simulations, we study 2D site-diluted dipolar Ising systems. Dipoles are randomly placed on a fraction x of all L^2 sites in a square lattice, and point along a common crystalline axis. For x_c< x<=1, where x_c = 0.79(5), we find an antiferromagnetic phase below a temperature which vanishes as x approaches x_c from above. At lower values of x, we study (i) distributions of the spin--glass (SG) overlap q, (ii) their relative mean square deviation Delta_q^2 and kurtosis and (iii) xi_L/L, where xi_L is a SG correlation length. From their variation with temperature and system size, we find that the paramagnetic phase covers the entire T>0 range. Our results enable us to obtain an estimate of the critical exponent associated to the correlation length at T=0, 1/nu=0.35(10).