Do you want to publish a course? Click here

Helicity of convective flows from localized heat source in a rotating layer

69   0   0.0 ( 0 )
 Added by Anna Evgrafova
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high.



rate research

Read More

We study the growth of Richtmyer-Meshkov mixing layers from an initial surface with spatially localized perturbations. We use two symmetric forms of the initial patch, which allow simulation data to be averaged to generate a two-dimensional statistical representation of the three dimensional turbulent flow. We find that as the mixing layer grows, the turbulent structures tend to form into discrete packets separated from the surface, with material entrainment into them dominated by a laminar entrainment flow inward from the surrounding regions where the surface was originally smooth. The entrainment appears to be controlled by the propagation of vortex pairs which appear at the boundary of the region of initial perturbations. This suggests that the growth of RM mixing from isolated features, as may be found in manufactured Inertial Confinement Fusion capsules, has a rather different mechanism than the growth of an RM mixing layer when the perturbations are uniform. This may be a challenge for some existing engineering models.
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that of kinetic energy cascade. Through theoretical analysis, we find that there are two channels in helicity cascade process. The first channel mainly originates from vortex twisting process, and the second channel mainly originates from vortex stretching process. By analysing the data of direct numerical simulations of typical turbulent flows, we find that these two channels behave differently. The ensemble averages of helicity flux in different channels are equal in homogeneous and isotropic turbulence, while they are different in other type of turbulent flows. The second channel is more intermittent and acts more like a scalar, especially on small scales. Besides, we find a novel mechanism of hindered even inverse energy cascade, which could be attributed to the second-channel helicity flux with large amplitude.
279 - V.A. Zheligovsky 2004
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) tensor is derived for flows, symmetric about the vertical axis in a layer. For convective rolls magnetic eddy correction is demonstrated to be always positive. For rectangular cell patterns, the region in the parameter space of negative MED coincides with that of small-scale magnetic field generation. No instances of negative MED in hexagonal cells are found. A family of plan-forms with a smaller symmetry group than that of rectangular cell patterns has been found numerically, where MED is negative for molecular magnetic diffusivity over the threshold for the onset of small-scale magnetic field generation.
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phase. The droplet concentration is chosen to explore the convective heat transfer of both Newtonian (low droplet concentration) and non-Newtonian (high droplet concentration) emulsions, the latter exhibiting shear-thinning rheology, with a noticeable increase of viscosity at low shear rates. It is well known that the transition to convection of a homogeneous Newtonian system is accompanied by the onset of steady flow and time-independent heat flux; in marked contrast, the heterogeneity of emulsions brings in an additional and previously unexplored phenomenology. As a matter of fact, when the droplet concentration increases, we observe that the heat transfer process is mediated by a non-steady flow, with neat heat-flux fluctuations, obeying a non-Gaussian statistics. The observed findings are ascribed to the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation functions.
We study transport of a weakly diffusive pollutant (a passive scalar) by thermoconvective flow in a fluid-saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability threshold of the system without disorder. Thermoconvective flows crucially effect the transport of a pollutant along the layer, especially when its molecular diffusion is weak. The effective (or eddy) diffusivity also allows to observe the transition from a set of localized currents to an almost everywhere intense global flow. We present results of numerical calculation of the effective diffusivity and discuss them in the context of localization of fluid currents and the transition to a global flow. Our numerical findings are in a good agreement with the analytical theory we develop for the limit of a small molecular diffusivity and sparse domains of localized currents. Though the results are obtained for a specific physical system, they are relevant for a broad variety of fluid dynamical systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا