No Arabic abstract
We present Lya and UV-nebular emission line properties of bright Lya emitters (LAEs) at z=6-7 with a luminosity of log L_Lya/[erg s-1] = 43-44 identified in the 21-deg2 area of the SILVERRUSH early sample developed with the Subaru Hyper Suprime-Cam (HSC) survey data. Our optical spectroscopy newly confirm 21 bright LAEs with clear Lya emission, and contribute to make a spectroscopic sample of 96 LAEs at z=6-7 in SILVERRUSH. From the spectroscopic sample, we select 7 remarkable LAEs as bright as Himiko and CR7 objects, and perform deep Keck/MOSFIRE and Subaru/nuMOIRCS near-infrared spectroscopy reaching the 3sigma-flux limit of ~ 2x10^{-18} erg s-1 for the UV-nebular emission lines of He II1640, C IV1548,1550, and O III]1661,1666. Except for one tentative detection of C IV, we find no strong UV-nebular lines down to the flux limit, placing the upper limits of the rest-frame equivalent widths (EW_0) of ~2-4 A for He II, C IV, and O III] lines. Here we also investigate the VLT/X-SHOOTER spectrum of CR7 whose 6 sigma detection of He II is claimed by Sobral et al. Although two individuals and the ESO-archive service carefully re-analyze the X-SHOOTER data that are used in the study of Sobral et al., no He II signal of CR7 is detected, supportive of weak UV-nebular lines of the bright LAEs even for CR7. Spectral properties of these bright LAEs are thus clearly different from those of faint dropouts at z~7 that have strong UV-nebular lines shown in the various studies. Comparing these bright LAEs and the faint dropouts, we find anti-correlations between the UV-nebular line EW_0 and UV-continuum luminosity, which are similar to those found at z~2-3.
We present an unprecedentedly large catalog consisting of 2,230 > L* Lya emitters (LAEs) at z=5.7 and 6.6 on the 13.8 and 21.2 deg2 sky, respectively, that are identified by the SILVERRUSH program with the first narrowband imaging data of the Hyper Suprime-Cam (HSC) survey. We confirm that the LAE catalog is reliable on the basis of 96 LAEs whose spectroscopic redshifts are already determined by this program and the previous studies. This catalogue is also available on-line. Based on this catalogue, we derive the rest-frame Lya equivalent-width distributions of LAEs at z~5.7-6.6 that are reasonably explained by the exponential profiles with the scale lengths of ~120-170A, showing no significant evolution from z~5.7 to z~6.6. We find that 275 LAEs with a large equivalent width (LEW) of >240A are candidates of young-metal poor galaxies and AGNs. We also find that the fraction of LEW LAEs to all ones is 4% and 21% at z~5.7 and z~6.6, respectively. Our LAE catalog includes 11 Lya blobs (LABs) that are LAEs with spatially extended Lya emission whose profile is clearly distinguished from those of stellar objects at the >~ 3sigma level. The number density of the LABs at z=6-7 is ~ 10^-7-10^-6 Mpc^-3, being ~ 10-100 times lower than those claimed for LABs at z~ 2-3, suggestive of disappearing LABs at z>~6, albeit with the different selection methods and criteria for the low and high-z LABs.
We present the SILVERRUSH program strategy and clustering properties investigated with $sim 2,000$ Ly$alpha$ emitters at $z=5.7$ and $6.6$ found in the early data of the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey exploiting the carefully designed narrowband filters. We derive angular correlation functions with the unprecedentedly large samples of LAEs at $z=6-7$ over the large total area of $14-21$ deg$^2$ corresponding to $0.3-0.5$ comoving Gpc$^2$. We obtain the average large-scale bias values of $b_{rm avg}=4.1pm 0.2$ ($4.5pm 0.6$) at $z=5.7$ ($z=6.6$) for $gtrsim L^*$ LAEs, indicating the weak evolution of LAE clustering from $z=5.7$ to $6.6$. We compare the LAE clustering results with two independent theoretical models that suggest an increase of an LAE clustering signal by the patchy ionized bubbles at the epoch of reionization (EoR), and estimate the neutral hydrogen fraction to be $x_{rm HI}=0.15^{+0.15}_{-0.15}$ at $z=6.6$. Based on the halo occupation distribution models, we find that the $gtrsim L^*$ LAEs are hosted by the dark-matter halos with the average mass of $log (left < M_{rm h} right >/M_odot) =11.1^{+0.2}_{-0.4}$ ($10.8^{+0.3}_{-0.5}$) at $z=5.7$ ($6.6$) with a Ly$alpha$ duty cycle of 1 % or less, where the results of $z=6.6$ LAEs may be slightly biased, due to the increase of the clustering signal at the EoR. Our clustering analysis reveals the low-mass nature of $gtrsim L^*$ LAEs at $z=6-7$, and that these LAEs probably evolve into massive super-$L^*$ galaxies in the present-day universe.
Determining Lya properties of distant galaxies is of great interest for various astrophysical studies. We examine how the strength of Lya emission can be constrained from broad-band SED fits instead of relying on spectroscopy. We use our SED fitting tool including the effects of nebular emission, considering in particular Lya emission as a free parameter, and we demonstrate our method with simulations of mock galaxies. Using this tool we analyse a large sample of U, B, V, and i dropout galaxies with multi-band photometry. We find significant trends of the fraction of galaxies with Lya emission increasing both with redshift z and towards fainter magnitude (at fixed z), and similar trends for the Lya equivalent width. Our inferred Lya properties are in good agreement with the available spectroscopic observations and other data. These results demonstrate that the strength of Lya emission in distant star-forming galaxies can be inferred quantitatively from broad-band SED fits, at least statistically for sufficiently large samples with a good photometric coverage.
We present Lya luminosity function (LF), clustering measurements, and Lya line profiles based on the largest sample, to date, of 207 Lya emitters (LAEs) at z=6.6 on the 1-deg^2 sky of Subaru/XMM-Newton Deep Survey (SXDS) field. Our z=6.6 Lya LF including cosmic variance estimates yields the best-fit Schechter parameters of phi*=8.5 +3.0/-2.2 x10^(-4) Mpc^(-3) and L*(Lya)=4.4 +/-0.6 x10^42 erg s^(-1) with a fixed alpha=-1.5, and indicates a decrease from z=5.7 at the >~90% confidence level. However, this decrease is not large, only =~30% in Lya luminosity, which is too small to be identified in the previous studies. A clustering signal of z=6.6 LAEs is detected for the first time. We obtain the correlation length of r_0=2-5 h^(-1) Mpc and bias of b=3-6, and find no significant boost of clustering amplitude by reionization at z=6.6. The average hosting dark halo mass inferred from clustering is 10^10-10^11 Mo, and duty cycle of LAE population is roughly ~1% albeit with large uncertainties. The average of our high-quality Keck/DEIMOS spectra shows an FWHM velocity width of 251 +/-16 km s^(-1). We find no large evolution of Lya line profile from z=5.7 to 6.6, and no anti-correlation between Lya luminosity and line width at z=6.6. The combination of various reionization models and our observational results about the LF, clustering, and line profile indicates that there would exist a small decrease of IGMs Lya transmission owing to reionization, but that the hydrogen IGM is not highly neutral at z=6.6. Our neutral-hydrogen fraction constraint implies that the major reionization process took place at z>~7.
The Lya emitter (LAE) fraction, X_LAE, is a potentially powerful probe of the evolution of the intergalactic neutral hydrogen gas fraction. However, uncertainties in the measurement of X_LAE are still debated. Thanks to deep data obtained with MUSE, we can measure the evolution of X_LAE homogeneously over a wide redshift range of z~3-6 for UV-faint galaxies (down to M_1500~-17.75). This is significantly fainter than in former studies, and allows us to probe the bulk of the population of high-z star-forming galaxies. We construct a UV-complete photo-redshift sample following UV luminosity functions and measure the Lya emission with MUSE using the second data release from the MUSE HUDF Survey. We derive the redshift evolution of X_LAE for M_1500 in [-21.75;-17.75] for the first time with a equivalent width range EW(Lya)>=65 A and find low values of X_ LAE<~30% at z<~6. For M_1500 in [-20.25;-18.75] and EW(Lya)<~25 A, our X_LAE values are consistent with those in the literature within 1sigma at z<~5, but our median values are systematically lower than reported values over the whole redshift range. In addition, we do not find a significant dependence of X_LAE on M_1500 for EW(Lya)>~50 A at z~3-4, in contrast with previous work. The differences in X_LAE mainly arise from selection biases for Lyman Break Galaxies (LBGs) in the literature: UV-faint LBGs are more easily selected if they have strong Lya emission, hence X_LAE is biased towards higher values. Our results suggest either a lower increase of X_LAE towards z~6 than previously suggested, or even a turnover of X_LAE at z~5.5, which may be the signature of a late or patchy reionization process. We compared our results with predictions from a cosmological galaxy evolution model. We find that a model with a bursty star formation (SF) can reproduce our observed X_LAE much better than models where SF is a smooth function of time.